Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)
Ta có : \(\hept{\begin{cases}\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\\\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)
( 3x-5 /9 )^2002 > 0 ; ( 3y+0,4/3 )^2004 > 0
=> (3x-5/9 )^2002 = 0 và ( 3y + 0,4 / 3 )^2004 = 0
=> 3x - 5 = 0
3x = 5
x = 5/3
=> 3y + 0,4 = 0
3y = -0,4
y= -2/15
Tương tự đến hết, kiểm tra lại hộ mk nhé !
\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)
Thay vào phương trình 1 ta có :
\(6\left(10+y\right)-5y=0\)
\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)
Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)
à mk xin lỗi d ko áp dụng đc
\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)
Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)
Làm nốt nhé !
Bài 3:
\(N=\dfrac{2}{3}x^2y^3.\left(\dfrac{-6}{5}xy\right)\)
\(N=\left(\dfrac{2}{3}.\dfrac{-6}{5}\right).\left(x^2.x\right).\left(y^3.y\right)\)
\(N=\dfrac{-4}{5}x^3y^4\)
-Hệ số: \(\dfrac{-4}{5}\)
-Phần biến: \(x^3y^4\)
-Bậc của đơn thức N là 7
\(P=\left(-3x^2y^3\right)^2.5x^2y\)
\(P=\left(-3\right)^2.\left(x^2\right)^2.\left(y^3\right)^2.5x^2y\)
\(P=9x^4y^6.5x^2y\)
\(P=\left(9.5\right).\left(x^4.x^2\right).\left(y^6.y\right)\)
\(P=45x^6y^7\)
-Hệ số: 45
-Phần biến: \(x^6y^7\)
-Bậc của đơn thức P là 13
\(N=\dfrac{2}{3}X^2Y^3.\left(\dfrac{-6}{5}XY\right)=\left(\dfrac{2}{3}.\dfrac{-6}{5}\right).\left(X^2.X\right).\left(Y.Y^3\right)=\dfrac{-4}{5}.X^3.Y^4\)
HỆ SỐ LÀ \(\dfrac{-4}{5}\)
PHẦN BIẾN LÀ \(X^3.Y^4\)
BẬC LÀ 7
BẠN THAM KHẢO NHA
Biến đổi:\(\left(\dfrac{3x-5}{9}\right)^{2014}+\left(\dfrac{3y+0,4}{3}\right)^{2016}=\dfrac{\left(3x-5\right)^{2014}}{9^{2014}}+\dfrac{\left(3y+0,4\right)^{2016}}{9^{1008}}=\dfrac{\left(3x-5\right)^{2014}+9^{1006}\left(3y+0,4\right)^{2016}}{9^{2016}}\)
=>\(\left(3x-5\right)^{2014}+9^{1006}\left(3y+0,4\right)^{2016}=0\)
Do x;y nguyên
=>(3x-5)2014 là 1 số nguyên
91006(3y+0,4)2016 là số thập phân
=>tổng của chúng khác 0
=>không tồn tại x;y thõa mãn
mk đây :v
Ta có :
\(\left(\dfrac{3x-5}{9}\right)^{2014}+\left(\dfrac{3y+0,4}{3}\right)^{2016}=0\)
Mà :
\(\left\{{}\begin{matrix}\left(\dfrac{3x-5}{9}\right)^{2014}\ge0\\\left(\dfrac{3y+0,4}{3}\right)^{2016}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{3x-5}{9}\right)^{2014}=0\\\left(\dfrac{3y+0,4}{3}\right)^{2016}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x-5}{9}=0\\\dfrac{3y+0,4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\3y+0,4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=5\\3y=-0,4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{-0,4}{3}\end{matrix}\right.\)
Vậy .......................
\(\left(\dfrac{3x-5}{9}\right)^{2018}>=0\forall x\)
\(\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall y\)
Do đó: \(\left(\dfrac{3x-5}{9}\right)^{2018}+\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3x-5}{9}=0\\\dfrac{3y+0,4}{3}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-5=0\\3y+0,4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{0.4}{3}=-\dfrac{2}{15}\end{matrix}\right.\)
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
Ta thấy \(\left(3x-\frac{5}{9}\right)^{2002}\ge0\text{ với mọi x}\\ \left(3y+\frac{0,4}{3}\right)^{2004}\ge0\text{ với mọi y}\)
Mà \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3x=\frac{5}{9}\\3y=\frac{-0,4}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{\frac{5}{9}}{3}\\y=\frac{\frac{-0,4}{3}}{3}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{27};\frac{-2}{45}\right)\)
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
Ta có: \(\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}\ge0;\forall x,y\\\left(3y+\frac{0,4}{3}\right)^{2004}\ge0;\forall x,y\end{matrix}\right.\)\(\Rightarrow\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}\ge0;\forall x,y\)
Do đó \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy ...