Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
$\Rightarrow 3^x(1+3+3^2+3^3)=1080$
$\Rightarrow 3^x.40=1080$
$\Rightarrow 3^x=27=3^3$
$\Rightarrow x=3$
\(3^{x-1}+3^x+3^{x+1}=39\)
\(3^{x-1}+3^{x-1}.3+9.3^{x-1}=39\)
\(13.3^{x-1}=39\)
\(3^{x-1}=39:13=3\)
\(x-1=1\)
\(x=2\)
Sửa đề: 3ˣ⁻¹ + 3ˣ + 3ˣ⁺¹ = 39
3ˣ⁻¹ + 3ˣ + 3ˣ⁺¹ = 39
3ˣ⁻¹.(1 + 3 + 3²) = 39
3ˣ⁻¹ . 13 = 39
3ˣ⁻¹ = 39 : 13
3ˣ⁻¹ = 3
x - 1 = 1
x = 1 + 1
x = 2
Ta có : \(\frac{3x}{2\times5}+\frac{3x}{5\times8}+\frac{3x}{8\times11}+\frac{3x}{11\times14}=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}\right)=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{14}\right)\) \(=\frac{1}{21}\)
\(x\times\frac{3}{7}\) \(=\frac{1}{21}\)
\(x\) \(=\frac{1}{21}\div\frac{3}{7}=\frac{1}{21}\times\frac{7}{3}\)
\(\Rightarrow x=\frac{1}{9}\)
Ta có 3x/2.5+3x/5.8+3x/8.11+3x/11.14=1/21
=>x(3/2.5+3/5.8+3/8.11+3/11.14)=1/21
=>3x(1/2.5+1/5.8+1/8.11+1/11.14)=1/21
=>3x(1/2-1/14)=1/21
=>3x.3/7=1/21
=>3x=1/21:3/7
=>3x=1
=>x=1:3=1/3
Sửa đề: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415
a) Ta có: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415
⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415
⇔x⋅34(1−15+15−19+19−113+...+181−185)=415⇔x⋅34(1−15+15−19+19−113+...+181−185)=415
⇔x⋅34(1−185)=415⇔x⋅34(1−185)=415
⇔x⋅6385=415⇔x⋅6385=415
hay x=68189x=68189
Vậy: x=68189
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
\(3^x\left(1+3\right)=108\\ 3^x\cdot4=108\\ 3^x=27\\ x=3\)
Thanks