Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| |3x-3| + 2x + 1 | = 3x + 1.
Ta xét hai trường hợp:
| 3x - 3 | + 2x + 1 = 3x + 1 với \(x\ge-\dfrac{1}{3}\).
| 3x - 3 | + 2x + 1 = -3x -1 với \(x< -\dfrac{1}{3}\).
Th1: | 3x - 3 | + 2x + 1 = 3x + 1 với \(x\ge-\dfrac{1}{3}\)
- Với \(-\dfrac{1}{3}\le x< 1\) ta có:
\(3-3x+2x+1=3x+1\Leftrightarrow-4x=-3\)\(\Leftrightarrow x=\dfrac{3}{4}\) (tm).
- Với \(x\ge1\) ta có:
\(3x-3+2x+1=3x+1\Leftrightarrow2x=3\) \(\Leftrightarrow x=\dfrac{3}{2}\) (tm).
Th2: | 3x - 3 | + 2x + 1 = -3x -1 với \(x< -\dfrac{1}{3}\).
Với \(x< -\dfrac{1}{3}\) thì \(3x-3< 0\) vì vậy ta có:
\(3-3x+2x+1=-3x-1\Leftrightarrow2x=-5\) \(\Leftrightarrow x=-\dfrac{5}{2}\) (tm).
Vậy có 3 giá trị của x thỏa mãn là: \(\dfrac{3}{4};\dfrac{3}{2};-\dfrac{5}{2}\).
=>||3x-3|+2x+1|=3x+1
=>|3x-3|+2x+1=3x+1 hoặc |3x-3|+2x+1=-3x-1
=>|3x-3|=x hoặc |3x-3|=-5x-2
Trường hợp 1: |3x-3|=x
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(3x-3-x\right)\left(3x-3+x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{3}{4}\right\}\)
Trường hợp 2: |3x-3|=-5x-2
\(\Leftrightarrow\left\{{}\begin{matrix}x< =-\dfrac{2}{5}\\\left(3x-3+5x+2\right)\left(3x-3-5x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =-\dfrac{2}{5}\\\left(8x-1\right)\left(-2x-5\right)=0\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{2}\)
[[3x-3]+2x(-1)2016]=3x-2017 mũ 0
<=>3x-3+2x+1=3x-1
<=>-3+2x+1=1
<=>-2+2x=1
<=>2x=2-1
<=>2x=1
<=>x=1/2
2,p=3 bạn nhé
1. SAi đề!
2.
\(\text{Ta xét 3 trường hợp:}\)
\(Th1:p=2\text{ ta có:}\)
\(2^2+2^2=8\left(\text{Hợp số}\Rightarrow\text{loại}\right)\)
\(Th2:p=3\text{ ta có:}\)
\(2^3+3^2=17\left(\text{số nguyên tố}\Rightarrow\text{chọn}\right)\)
\(Th3:p>3\text{ ta có:}\)
\(\Rightarrow p\text{ ko chia hết cho 3 và p luôn lẻ}\left(\text{vì 2 là số chẵn duy nhất là số nguyên tố}\right)\)
\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\text{, do đó }p^2-1=\left(p-1\right)\left(p+1\right)⋮3\left(1\right)}\)
\(\text{Vì p luôn lẻ nên }2^p+1\text{ luôn chia hết cho 3}\left(2\right)\)
\(\text{Từ (1) và (2) ta có:}\)
\(2^p+1+p^2-1=2^p+p^2⋮3\left(\text{ loại }\right)\)
\(\text{Vậy p=3 thỏa mãn đề bài}\)
a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
=>16x-7=13x+2
=>3x=9
hay x=3
b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)
=>x+2017=0
hay x=-2017
e: \(\left(2x-3\right)^2=144\)
=>2x-3=12 hoặc 2x-3=-12
=>2x=15 hoặc 2x=-9
=>x=15/2 hoặc x=-9/2
\(\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\le0\)
\(\left\{{}\begin{matrix}\left|3x-1\right|\ge0\Rightarrow\left|3x-1\right|^{2015}\ge0\forall x\\\left(2x-y\right)^{2016}\ge0\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\ge0\\\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\le0\end{matrix}\right.\)
\(\Rightarrow\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-1\right|^{2015}=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\\\left(2x-y\right)^{2016}=0\Rightarrow2x=y\Rightarrow x=\dfrac{1}{2}y\Rightarrow y=\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow A=-2\dfrac{1}{3}^2-\dfrac{1}{3}.\dfrac{1}{6}+\dfrac{1}{6}^2+2016\)
\(A=-2.\dfrac{1}{9}-\dfrac{1}{18}+\dfrac{1}{36}+2016\)
\(A=\dfrac{-8}{36}-\dfrac{2}{36}+\dfrac{1}{36}+2016\)
\(A+-\dfrac{1}{4}+2016\)
Ta có: ||3x-3|+2x+\(\left(-1\right)^{2016}\)|=3x+\(2017^0\) \(\Leftrightarrow\) ||3x-3|+2x+1|=3x+1
\(\Rightarrow\left[{}\begin{matrix}\left|3x-3\right|+2x+1=3x+1\\\left|3x-3\right|+2x+1=-3x-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|3x-3\right|=3x+1-2x-1=x\\\left|3x-3\right|=-3x-1-2x-1=-5x-2\end{matrix}\right.\)
+) Với |3x-3|=x. Điều kiện: \(x\ge0\).
Khi đó \(\left|3x-3\right|=x\Leftrightarrow\left[{}\begin{matrix}3x-3=x\\3x-3=-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-3\\4x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2}{3}\\x=\dfrac{-3}{4}\end{matrix}\right.\) (không thỏa mãn)
+)Với |3x-3|=-5x-2. Điều kiện: \(-5x-2\ge0\Rightarrow-5x\ge2\Rightarrow x\ge\dfrac{-2}{5}\)
Khi đó \(\left|3x-3\right|=-5x-2\Rightarrow\left[{}\begin{matrix}3x-3=-5x-2\\3x-3=5x+2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}8x=1\\-2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{8}\left(TM\right)\\x=\dfrac{-2}{5}\left(TM\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{8}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
cảm ơn bạn nhiều nha!!