K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

7 tháng 12 2016

1:4/3

2:-0,6

3:2,5

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm

a: 3-2|4x-5|=2/6

=>2|4x-5|=3-1/3=8/3

=>|4x-5|=4/3

=>4x-5=4/3 hoặc 4x-5=-4/3

=>4x=19/3 hoặc 4x=11/3

=>x=19/12 hoặc x=11/12

c: (7-3x)(2x+1)=0

=>2x+1=0 hoặc -3x+7=0

=>x=-1/2 hoặc x=-7/3

d: 2x(5-3x)>0

=>x(3x-5)<0

=>0<x<5/3

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

a: \(x^2-\dfrac{3}{2}=0\)

nên \(x^2=\dfrac{3}{2}\)

hay \(x\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)

b: \(\dfrac{1}{2}x^2+\dfrac{7}{2}x=0\)

\(\Leftrightarrow x^2+7x=0\)

=>x(x+7)=0

=>x=0 hoặc x=-7

c: \(2x\left(x-\dfrac{1}{7}\right)=0\)

=>x(x-1/7)=0

=>x=0 hoặc x=1/7

d: (3x-2)(2x-2/3)=0

=>3x-2=0 hoặc 2x-2/3=0

=>3x=2 hoặc 2x=2/3

=>x=2/3 hoặc x=1/3

18 tháng 8 2020

+) \(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)

\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)

\(\Leftrightarrow-11x+22=0\)

\(\Leftrightarrow-11\left(x-2\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

+) \(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow6x^2+4x+9x+6+\left(2-6x\right)\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)

\(\Leftrightarrow12x+7=1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

18 tháng 8 2020

2x( x - 4 ) - x( 2x + 3 ) + 22 = 0

<=> 2x2 - 8x - 2x2 - 3x + 22 = 0

<=> -11x + 22 = 0

<=> -11x = -22

<=> x = 2

( 2x + 3 )( 3x + 2 ) + 2( 1 - 3x )( x + 1/2 ) = 1

<=> 6x2 + 13x + 6 + 2( -3x2 - 1/2x + 1/2 ) = 1

<=> 6x2 + 13x + 6 - 6x2 - x + 1 = 1

<=> 12x + 7 = 1 

<=> 12x = -6

<=> x = -6/12 = -1/2