\(3x-|2x+1|=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

24 tháng 8 2017

\(a,\left(-3\text{x}+3\right)\left(-2\text{x}-2\right)\le\)\(0\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}-3\text{x}+3\le0\Rightarrow x\ge1\\-2\text{x}-2\ge0\Rightarrow x\le-2\end{cases}}\\\hept{\begin{cases}-3x+3\ge0\Rightarrow x\le1\\-2\text{x}-2\le0\Rightarrow x\ge-2\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}-2\ge x\ge1\left(lo\text{ại}\right)\\1\ge x\ge-2\left(ch\text{ọn}\right)\end{cases}}}\)

24 tháng 8 2017

a) Do: (-3x + 3)(-2x - 2) bé hơn hoặc bằng 0 nên (-3x + 3) và (-2x - 2) trái dấu.

Mà: -3x + 3 > -2x - 2

=> -3x + 3 lớn hơn hoặc bằng 0 và -2x - 2 bé hơn hoặc bằng 0

=> x bé hơn hoặc bằng 1 và x lớn hơn hoặc bằng -2

b) Do: (1/2 - 2x)(1/2 + 3x) lớn hơn hoặc bằng 0 nên (1/2 - 2x) và (1/2 + 3x) cùng dấu.

TH1: Khi (1/2 - 2x) và (1/2 + 3x) lớn hơn hoặc bằng 0

=> x lớn hơn hoặc bằng 1/4 và x lớn hơn hoặc bằng -1/6

=> x lớn hơn hoặc bằng -1/6

Th2: (1/2 - 2x) và (1/2 + 3x) cùng bé hơn hoặc bằng 0

=> x bé hơn hoặc bằng 1/4 và x bé hơn hoặc bằng -1/6

=> x bé hơn hoặc bằng 1/4

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

28 tháng 6 2017

a) |2x - 1| = 3x + 2

<=> \(\left[{}\begin{matrix}2x-1=3x+2\\2x-1=-3x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3=x\\5x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{5}\end{matrix}\right.\)

b) \(2x-\dfrac{4}{3}-1\dfrac{2}{3}=1\)

\(2x-\dfrac{4}{3}-\dfrac{5}{3}=1\)

\(2x-\dfrac{9}{3}=1\)

\(2x-3=1\)

<=> x = 4 : 2 = 2

c) \(\left|3x-\dfrac{1}{4}\right|=x-1\dfrac{3}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{1}{4}=x-1\dfrac{3}{4}\\3x-\dfrac{1}{4}=-x+1\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{7}{4}+\dfrac{1}{4}\\4x=\dfrac{7}{4}+\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{3}{2}\\4x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{1}{2}\end{matrix}\right.\)

24 tháng 8 2017

a. \(\left(-3x+3\right)\left(-2x-2\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}-3x+3\le0;-2x-2\ge0\\-3x+3\ge0;-2x-2\le0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-3x\le-3;-2x\ge2\\-3x\ge-3;-2x\le2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{-3}{-3}=1;x\le\dfrac{2}{-2}=-1\\x\le\dfrac{-3}{-3}=1;x\ge\dfrac{2}{-2}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\left[-1;1\right]\end{matrix}\right.\)

Vậy \(x\in\left[-1;1\right]\)

b. \(\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{2}+3x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-2x\ge0;\dfrac{1}{2}+3x\ge0\\\dfrac{1}{2}-2x\le0;\dfrac{1}{2}+3x\le0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2x\ge-\dfrac{1}{2};3x\ge-\dfrac{1}{2}\\-2x\le-\dfrac{1}{2};3x\le-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{2}:\left(-2\right)=\dfrac{1}{4};x\ge-\dfrac{1}{2}:3=-\dfrac{1}{6}\\x\ge-\dfrac{1}{2}:\left(-2\right)=\dfrac{1}{4};x\le-\dfrac{1}{2}:3=-\dfrac{1}{6}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\in\left[-\dfrac{1}{6};\dfrac{1}{4}\right]\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x\in\left[-\dfrac{1}{6};\dfrac{1}{4}\right]\)

a) Ta có: \(5x^2-3x\left(x+2\right)\)

\(=5x^2-3x^2-6x\)

\(=2x^2-6x\)

b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)

\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)

\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)

\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)

d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)

\(=-4x^2y+5x^2-2x\)

e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)

\(=4x^4-16x^3+4x^4-2x^3+14x^2\)

\(=8x^4-18x^3+14x^2\)

f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)

\(=25x-12x+4+35x-14x^3\)

\(=-14x^3+48x+4\)

26 tháng 9 2017

a) \(\left|2x-3\right|-\dfrac{5}{2}=\dfrac{1}{3}\)

\(\left|2x-3\right|=\dfrac{1}{3}+\dfrac{5}{2}=\dfrac{2}{6}+\dfrac{15}{6}\)

\(\left|2x-3\right|=\dfrac{17}{6}\)

\(+)2x-3=\dfrac{17}{6}\Rightarrow2x=\dfrac{35}{6}\Rightarrow x=\dfrac{35}{12}\)

\(+)2x-3=\dfrac{-17}{6}\Rightarrow2x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{12}\)

vậy...

26 tháng 9 2017

\(\left|x-1\right|+3x=1\\ \Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left\{{}\begin{matrix}x-1=1-3x\\x-1=-1+3x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x=2\\-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)

Dấu ngoặc vuông nhé

thánh bấm nhầm