K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2016

đề bài là chứng minh à pạn

17 tháng 2 2016

Đề bài chắc là : Tìm \(x\in Z\) sao cho 3x-1⋮x+2

Ta có: 

x+2⋮x+2

\(\Rightarrow\) 3(x+2)⋮x+2

\(\Rightarrow\) 3x+6⋮x+2

Mà 3x-1⋮x+2

\(\Rightarrow\) (3x+6)-(3x-1)⋮x+2

\(\Rightarrow\) 7⋮x+2

\(\Rightarrow x+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow x\in\left\{-9;-3;-1;5\right\}\)

Vậy \(x\in\left\{-9;-3;-1;5\right\}\)

 

8 tháng 9 2023

Dựa vào các phép toán đã cho, ta có thể giải các phương trình và tìm giá trị của các biến. Hãy xem xét từng phép toán một:

u/ VxER:x>-2⇒x²>4: Phép toán này cho biết nếu x > -2, thì x² > 4. Điều này đúng vì nếu x > -2, thì x có thể là -1, 0, 1, 2, ... và x² sẽ luôn lớn hơn 4.

v/3neN:n +1chia hết cho 5: Phép toán này cho biết nếu n chia hết cho 3, thì n + 1 sẽ chia hết cho 5. Điều này không chính xác vì nếu n = 2, thì n không chia hết cho 3 và n + 1 không chia hết cho 5.

w/2k eZ:k? _1 chia hết cho 24: Phép toán này không rõ ràng. Có thể w chia hết cho 2 và k là một số nguyên, nhưng không có thông tin về _1 chia hết cho 24.

x/ VneN:n chia hết cho 9 → n chia hết cho 9: Phép toán này cho biết nếu n chia hết cho 9, thì x chắc chắn chia hết cho 9. Điều này đúng vì nếu n chia hết cho 9, thì x có thể là 9, 18, 27, ... và x sẽ chia hết cho 9.

Vậy, dựa vào các phép toán đã cho, ta có thể kết luận rằng:

Nếu x > -2, thì x² > 4.Nếu n chia hết cho 9, thì x chia hết cho 9.
29 tháng 7 2016

a) \(5\cdot\left(\frac{x}{3}-4\right)=15\)

\(\Leftrightarrow\)\(\frac{x-12}{3}=3\)

\(\Leftrightarrow x-12=9\)

\(\Leftrightarrow x=21\)

Vạy x=21

+) 2x+3 chia hét cho x+1

Bạn chia cột dọc 2x+3 : x+1 =2 dư 1

Vậy để 2x+3 \(⋮\) x+1 thì x+1 \(\in\) Ư(1)

Mà Ư(1)={1;-1}

=> x+1={1;-1}

*)TH1: x+1=1<=>x=0

*)TH2: x+1=-1<=>x=-2

Vậy x={-2;0} thì 2x+3\(⋮\) x+1

b)Tìm GTLN của \(\frac{7}{\left(x+1\right)^2+1}\)

Vì \(\left(x+1\right)^2\ge0\) với mọi x

=>\(\left(x+1\right)^2+1\ge1\) 

=> \(\frac{7}{\left(x+1\right)^2+1}\le\frac{7}{1}=7\)

29 tháng 6 2019

\( \left(x+2\right)⋮\left(x-1\right)\Leftrightarrow\frac{x+2}{x-1}\in Z\)

\(\frac{x+2}{x-1}=1+\frac{3}{x-1}\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)

20 tháng 1 2017

Ta có: \(\frac{x+3}{x-2}=1+\frac{5}{x-2}\)

Để x + 3\(⋮\)x - 2 thì x - 2 phải là ước nguyên của 5

\(\Rightarrow\)(x - 2) = (- 5; - 1; 1; 5)

\(\Rightarrow\)x = (- 3; 1; 3; 7)

Vậy giá trị x nhỏ nhất cần tìm là x = - 3

24 tháng 1 2017

cam on haha

18 tháng 1 2019

\(2n+1⋮n-3\)

\(\Leftrightarrow2\left(n-3\right)+7⋮n-3\)

\(\Leftrightarrow7⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(7\right)\in\left\{-7;-1;1;7\right\}\)

\(\Leftrightarrow n\in\left\{-4;2;4;10\right\}\)

18 tháng 1 2019

yeu Thank kiu Luân Đào nhiud nha ♥

2: \(\Leftrightarrow15n-5⋮5n+2\)

\(\Leftrightarrow15n+6-11⋮5n+2\)

\(\Leftrightarrow5n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-\dfrac{1}{5};-\dfrac{3}{5};\dfrac{9}{5};-\dfrac{13}{5}\right\}\)

3: \(\Leftrightarrow n+5\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{-4;-6;2;-12\right\}\)

19 tháng 7 2017

Tìm x biết:

b/\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-x+1\right)\)

<=> \(4x^2 +12x+9-25x^2+16-x^2-10x-25+21x^2+6x-7x-2+x^2-x+1=0\)

<=>0x-1=0

<=>0x=1 (vô lí) (dòng này không cần ghi thêm cũng được)

=> Không có giá trị x nào thỏa mãn

c/ \((1-3x)^2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)^2\)

<=>\(1-6x+9x^2-9x^2-x+18x+2-9x^2+16+9x^2+54x+81=0\)

<=> 65x+100=0

<=> x=\(\dfrac{-20}{13}\)

d/\((3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2\)

<=> \(9x^2-16-4x^2-20x-25-x^2+10x-25-4x^2-4x-1+x^2+2x-x^2+2x-1=0\)

<=> -10x-68=0

<=> x=\(\dfrac{-34}{5}\)

23 tháng 11 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-3\\x^2+6x+9=21-x^2-4x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-3\\2x^2+10x-12=0\end{matrix}\right.\Leftrightarrow x=1\)

b: \(\left|x^2+5x+4\right|-4=x\)

=>|x^2+5x+4|=x+4

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-4\\\left(x^2+5x+4-x-4\right)\left(x^2+5x+4+x+4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-4\\\left(x^2+4x\right)\left(x^2+6x+8\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;-2;-4\right\}\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\\left(2x^2-5x+4-2x+1\right)\left(2x^2-5x+4+2x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\\left(2x^2-7x+5\right)\left(2x^2-3x+3\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{5}{2};1\right\}\)

7 tháng 11 2019

a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)

\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)

đặt\(x^2+x+1=t\left(t>0\right)\)

\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)

bình phương 2 vế pt trở thành:

\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)

\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m

vậy pt vô nghiệm

NV
7 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)

\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)

\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))

\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)

\(\Leftrightarrow11a^2+6a-25=0\)

Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó

b/

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)

\(\Leftrightarrow\sqrt{a^2+3a}=2\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)