Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Rightarrow10x-4+6x=6+15-9x\Leftrightarrow7x=25\Leftrightarrow x=\dfrac{25}{7}\)
b, \(\Rightarrow2\left(3x^2+5x-2\right)-6x^2-3=33\Leftrightarrow10x-7=33\Leftrightarrow x=4\)
c, \(\Rightarrow12x-10x-4=21-9x\Leftrightarrow11x=25\Leftrightarrow x=\dfrac{25}{11}\)
d, \(\Rightarrow3x-3+2x-2-x+1=12\Leftrightarrow4x=16\Leftrightarrow x=4\)
Ta có
( 3 x – 1 ) 2 + 2 ( x + 3 ) 2 + 11 ( 1 + x ) ( 1 – x ) = 6 ⇔ ( 3 x ) 2 – 2 . 3 x . 1 + 1 2 + 2 ( x 2 + 6 x + 9 ) + 11 ( 1 – x 2 ) = 6 ⇔ 9 x 2 – 6 x + 1 + 2 x 2 + 12 x + 18 + 11 – 11 x 2 = 6 ⇔ ( 9 x 2 + 2 x 2 – 11 x 2 ) + ( - 6 x + 12 x ) = 6 – 1 – 11 – 18
ó 6x = -24 ó x = -4
Vậy x = -4
Đáp án cần chọn là: A
b: 2x+5=x-5
=>2x-x=-5-5
=>x=-10
c: 2x(x+2)+5(x-2)=0
=>\(2x^2+4x+5x-10=0\)
=>\(2x^2+9x-10=0\)
\(\text{Δ}=9^2-4\cdot2\cdot\left(-10\right)=81+80=161>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-9-\sqrt{161}}{4}\\x_2=\dfrac{-9+\sqrt{161}}{4}\end{matrix}\right.\)
h:
ĐKXĐ: \(x\notin\left\{2;-1\right\}\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
=>\(\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
=>\(2\left(x-2\right)-\left(x+1\right)=3x-11\)
=>2x-4-x-1=3x-11
=>x-5=3x-11
=>x-3x=-11+5
=>-2x=-6
=>x=3(nhận)
i: 3x-12=0
=>3x=12
=>x=12/3=4
f: \(\dfrac{x-3}{5}+\dfrac{1+2x}{3}=6\)
=>\(\dfrac{3\left(x-3\right)+5\left(2x+1\right)}{15}=6\)
=>\(\dfrac{3x-9+10x+5}{15}=6\)
=>13x-4=90
=>13x=94
=>\(x=\dfrac{94}{13}\)
Lời giải:
a. $x(3x+1)+(x-1)^2-(2x+1)(2x-1)=0$
$\Leftrightarrow (3x^2+x)+(x^2-2x+1)-(4x^2-1)=0$
$\Leftrightarrow 3x^2+x+x^2-2x+1-4x^2+1=0$
$\Leftrightarrow (3x^2+x^2-4x^2)+(x-2x)+(1+1)=0$
$\Leftrightarrow -x+2=0$
$\Leftrightarrow x=2$
b.
$(x+1)^3+(2-x)^3-9(x-3)(x+3)=0$
$\Leftrightarrow [(x+1)+(2-x)][(x+1)^2-(x+1)(2-x)+(2-x)^2]-9(x-3)(x+3)=0$
$\Leftrightarrow 3[x^2+2x+1-(x-x^2+2)+(x^2-4x+4)]-9(x-3)(x+3)=0$
$\Leftrightarrow 3(3x^2-3x+3)-9(x^2-9)=0$
$\Leftrightarrow 9(x^2-x+1)-9(x^2-9)=0$
$\Leftrightarrow 9(x^2-x+1-x^2+9)=0$
$\Leftrightarrow 9(-x+10)=0$
$\Leftrightarrow -x+10=0\Leftrightarrow x=10$
c.
$(x-1)^3-(x+3)(x^2-3x+9)+3x^2=25$
$\Leftrightarrow (x^3-3x^2+3x-1)-(x^3+3^3)+3x^2=25$
$\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2=25$
$\Leftrightarrow (x^3-x^3)+(-3x^2+3x^2)+3x-28=25$
$\Leftrightarrow 3x-28=25$
$\Leftrightarrow x=\frac{53}{3}$
d.
$(x+2)^3-(x+1)(x^2-x+1)-6(x-1)^2=23$
$\Leftrightarrow (x^3+6x^2+12x+8)-(x^3+1)-6(x^2-2x+1)=23$
$\Leftrightarrow x^3+6x^2+12x+8-x^3-1-6x^2+12x-6=23$
$\Leftrightarrow (x^3-x^3)+(6x^2-6x^2)+(12x+12x)+(8-1-6)=23$
$\Leftrightarrow 24x+1=23$
$\Leftrgihtarrow 24x=22$
$\Leftrightarrow x=\frac{11}{12}$
a: Ta có: \(5\left(4x-1\right)+2\left(1-3x\right)-6\left(x+5\right)=10\)
\(\Leftrightarrow20x-5+2-6x-6x-30=10\)
\(\Leftrightarrow8x=43\)
hay \(x=\dfrac{43}{8}\)
b: ta có: \(2x\left(x+1\right)+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)+6x^2=0\)
\(\Leftrightarrow2x^2+2x+3x^2-3-5x^2-5x+6x^2=0\)
\(\Leftrightarrow6x^2-3x-3=0\)
\(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Bài 1:
8: \(=\dfrac{x+3}{x\left(x-3\right)}\)
9: \(=\dfrac{x-2}{x-5}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-2\right)^2}=\dfrac{x+5}{x-2}\)
10: \(=1:\dfrac{a-1}{a}=\dfrac{a}{a-1}\)
12: \(=\dfrac{6\left(x+1\right)}{3x\left(x+1\right)}=\dfrac{2}{x}\)
13: \(\dfrac{3}{x+3}-\dfrac{x-6}{x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2x+6}{x\left(x+3\right)}=\dfrac{2}{x}\)
(3x - 1)2 + 2(x + 3) + 11(x + 1)(1 - x) = 6
<=> 9x2 - 6x + 1 + 2x + 6 + 11(1 - x2) = 6
<=> 9x2 - 4x + 7 + 11 - 11x2 - 6 = 0
<=> -2x2 - 4x + 12 = 0
<=> x2 + 2x - 6 = 0
<=> (x2 + 2x + 1) - 7 = 0
<=> (x + 1)2 = 7
<=> x + 1 = \(\sqrt{7}\)hay x + 1 = \(-\sqrt{7}\)
<=> x = \(\sqrt{7}\)- 1 hay x = \(-\sqrt{7}\)- 1