![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
\(TH2:x+6=0\Leftrightarrow x=-6\)
\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha )
\(\left(2x+5\right)^2=\left(3x-1\right)^2\)
\(2x+5=3x-1\)
\(2x-3x=-1-5\)
\(-1x=-6\)
\(x=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có \(x^3+3x^2+x+3=0\)
\(\Leftrightarrow\left(x^3+3x^2\right)+\left(x+3\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)
Nếu x+3=0 =>x=-3
Nếu \(x^2+1=0\) =>x\(=\varnothing\) (vì \(x^2+1>0\))
Vậy x=-3
2) đặt x^2+x+1 = t
=> x^2 +x +2 =t+1
pt => t(t+1)=2
t^2 + t -2 =0
\(\Rightarrow\left[\begin{matrix}t=1\\t=-2\end{matrix}\right.\)
voi t=1 => x^2 +x+1=1
=> \(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
voi t=-2 => x^2+x+1=-2
=> x^2+x+3=0(vo nghiem)
cau 3 lam nhu cau 2
4) pt <=> (x^2-4)(x+3-x+1)=0
ban tu giai not nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 15x3 - 15x = 0
15x(x2-1)=0
15x=0 hoặc x2-1=0 (tự tính nhoa)
b,3x2-6x+3=0
3(x2-2x+1)=0
x2 -2x+1=0:3=3
x2-2x=3-1=2
x(x-2)=0
x=0 hoặc x-2=0 (tự tính nhoa)
Bài làm
a) 15x3-15x=0
<=> 15x( x2 - 1 ) = 0
<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy x = { 0; + 1 }
b) 3x2 - 6x + 3 = 0
<=> 3( x2 - 2x + 1 ) = 0
<=> x2 - 2x + 1 = 0
<=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy x = 1
c) 5(x - 1) - 3x(1 - x) = 0
<=> 5(x - 1) + 3x(x - 1) = 0
<=> (5 + 3x)(x - 1) = 0
<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)
Vậy x = { -5/3; 1 }
e) -7(x + 2) = 2x(x + 2)
<=> -7(x + 2 ) - 2x( x + 2 ) = 0
<=> (x + 2)(-7 - 2x) = 0
<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)
Vậy x = { -2; x = -7/2 }
f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)
<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0
<=> (3x + 5)(2x - 3 - x + 1) = 0
<=> (3x + 5)(x - 2) = 0
<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)
Vậy x = { -5/3; 2 }
![](https://rs.olm.vn/images/avt/0.png?1311)
1) 2x2-5x+2=0
\(\Leftrightarrow\) 2x2-4x-x+2=0
\(\Leftrightarrow\)2x(x-2)-(x-2)=0
\(\Leftrightarrow\)(x-2)(2x-1)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x-2=0}\\\text{2}x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x=2}\\\text{x}=\frac{1}{2}\end{matrix}\right.\)
vậy tập nghiệm của pt là S={2; \(\frac{\text{1}}{\text{2}}\)}
2) (x-1)2=2(x2-1)
\(\Leftrightarrow\)(x-1)2-2(x-1)(x+1)=0
\(\Leftrightarrow\)(x-1)[(x-1)-2(x+1)]=0
\(\Leftrightarrow\)-(x-1)(x+3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{-(x-1)=0}\\\text{x}+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x-1=0}\\\text{x}+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x=1}\\\text{x}=-3\end{matrix}\right.\)
vậy tập nghiệm của pt là S={1; -3}
3, 2(x+2)2-x3-8=0
\(\Leftrightarrow\)2(x+2)2-(x3+8)=0
\(\Leftrightarrow\)(x+2)[2(x+2)-(x2-2x+4)]=0
\(\Leftrightarrow\)-x(x+2)(4-x)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{-x=0}\\\text{x}+2=0\\4-x=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x=0}\\\text{x}=-2\\x=4\end{matrix}\right.\)
vậy tập nghiệm của pt là S={0; -2; 4}
4, x3-3x2+3x-1=(x-1)(x+1)
\(\Leftrightarrow\)(x3-1)+(-3x2+3x)=(x-1)(x+1)
\(\Leftrightarrow\)(x-1)(x2+x+1)-3x(x-1)=(x-1)(x+1)
\(\Leftrightarrow\)(x-1)(x2-2x+1)-(x-1)(x+1)=0
\(\Leftrightarrow\)(x-1)(x2-3x)=0
\(\Leftrightarrow\)x(x-1)(x-3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x=0}\\\text{x}-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x=0}\\\text{x}=1\\x=3\end{matrix}\right.\)
vậy tập nghiệm của pt là S={0;1;3}
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\left(2x-4\right)\left(3x+1\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(3x+1\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\cdot7x=0\)
Vì 7≠0
nên \(\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy: x∈{0;2}
b) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\cdot3x=0\)
Vì 3≠0
nên \(\left[{}\begin{matrix}x+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
Vậy: x∈{0;-2}
c) Ta có: \(2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)
d) Ta có: \(x^3-6x^2+9x=0\)
\(\Leftrightarrow x\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy: x∈{0;3}
k) Ta có: \(x^3+3x^2+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)(1)
Ta có: \(x^2+1\ge1>0\forall x\)(2)
Từ (1) và (2) suy ra x+3=0
hay x=-3
Vậy: x=-3
cái bài a) thì số 2 đâu ra thế bạn?
<=>(x−2)[2(3x+1)+(x−2)]=0
![](https://rs.olm.vn/images/avt/0.png?1311)
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
(3x-1)2 -(x+3)2=0
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-3\end{cases}}}\)
vậy.....
Th1:(3x-1)2=0 Th2:(3x-1)2=0
3x-1=0 Tương tự nhé(như th1 )
3x =0+1
3x = 1 Vậy x =1/3
X =1:3
X. =1/3