Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta'=m^2-5m^2+16=16-4m^2\ge0\Rightarrow-2\le m\le2\)
b/ Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=5m^2-16\end{matrix}\right.\)
\(A=5x_1^2+3x_1x_2-17x_1+5x_2^2+3x_1x_2-17x_2\)
\(\Rightarrow A=5\left(\left(x_1+x_2\right)^2-2x_1x_2\right)+6x_1x_2-17\left(x_1+x_2\right)\)
\(\Rightarrow A=5\left(x_1+x_2\right)^2-4x_1x_2-17\left(x_1+x_2\right)\)
\(\Rightarrow A=5\left(2m\right)^2-4\left(5m^2-16\right)-17.2m=64-34m\)
Mà \(-2\le m\le2\) \(\Rightarrow-4\le A\le132\)
\(\Rightarrow\left\{{}\begin{matrix}A_{max}=132\\A_{min}=-4\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-3\end{matrix}\right.\)
\(A=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left(x_1^2+x_2^2\right)}=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}=\frac{6.\left(-2\right)^2-2\left(-3\right)}{5.\left(-3\right)\left[\left(-2\right)^2-2\left(-3\right)\right]}=-\frac{1}{5}\)
\(B=\frac{3\left(x_1+x_2\right)^2-x_1x_2}{4x_1x_2\left(x_1+x_2\right)}=\frac{3\left(-2\right)^2-\left(-3\right)}{4.\left(-3\right)\left(-2\right)}=\frac{15}{24}=\frac{5}{8}\)
Ptr có: `\Delta'=(-2)^2-3.(-2)=10 > 0`
`=>` Ptr có `2` `n_o` pb
`=>` Áp dụng Vi-ét có: `{(x_1+x_2=[-b]/a=4/3),(x_1.x_2=c/a=[-2]/3):}`
Có: `A=[3x_1 ^2-2]/[x_1]+[3x_2 ^2-2]/[x_2]`
`A=[x_2(3x_1 ^2-2)+x_1(3x_2 ^2-2)]/[x_1.x_2]`
`A=[3x_1 ^2.x_2-2x_2+3x_1.x_2 ^2-2x_1]/[x_1.x_2]`
`A=[3x_1.x_2(x_1+x_2)-2(x_1+x_2)]/[x_1.x_2]`
`A=[3 . [-2]/3 . 4/3-2 . 4/3]/[[-2]/3]=8`
Đây chắc là 1 phần trong bài toán biện luận pt bậc 2 tham số m
Bạn ko đưa pt đó ra thì chúng ta không có bất cứ dữ liệu nào để làm cả.
Bạn vẫn ko hiểu vấn đề à?
\(6\left(x_1^2+x_2^2\right)=6\left(x_1+x_2\right)^2-12x_1x_2\)
Không phải là \(6\left(x_1^2+x_2^2\right)=6\left(x_1+x_2\right)^2-2x_1x_2\) như bạn nghĩ.
Hiểu chưa ạ? Ko tin hãy khai triển ra, sao bạn ko khai triển để kiểm tra mà cứ thắc mắc kiểu kì cục vậy ta?
Anh Mai
\(\left\{{}\begin{matrix}x_1+x_2=4\sqrt{3}\\x_1x_2=-8\end{matrix}\right.\)
\(Q=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left(x_1^2+x_2^2\right)}=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}\)
\(Q=\frac{6.\left(4\sqrt{3}\right)^2-2.\left(-8\right)}{5.\left(-8\right).\left[\left(4\sqrt{3}\right)^2-2.\left(-8\right)\right]}\)
Casio bấm nốt kết quả
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-5\end{matrix}\right.\)
\(D=5-\dfrac{x_2}{x_1}-\dfrac{x_1}{x_2}+3=8-\dfrac{x_1^2+x_2^2}{x_1x_2}=8-\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=8-\dfrac{\left(-4\right)^2-10}{5}=...\)
cái này bạn lm cái điều kiện vs giải pt đối chiếu điều kiện Cho mik nhé
a) Ta có: \(\Delta'=\left(-m\right)^2+m+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}S=2x_1+3x_2+3x_1+2x_2=5\left(x_1+x_2\right)=5.2m=10m\\P=\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6x_1^2+13x_1x_2+6x_2^2=6\left(x_1+x_2\right)^2+x_1x_2\end{cases}}\)
\(\hept{\begin{cases}S=10m\\P=6.\left(2m\right)^2-m-1=24m^2-m-1\end{cases}}\)
Hai nghiệm 2x1 + 3x2 và 3x1 + 2x2 là nghiệm của pt \(x^2-10mx+24m^2-m-1=0\)
b) Theo bài ra, ta có:
\(\left|2x_1+3x_2\right|+\left|3x_1+2x_2\right|=30\)
<=> \(\left(2x_1+3x_2\right)^2+\left(3x_1+2x_2\right)^2+2\left|\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)\right|=900\)
<=> \(\left(2x_1+3x_2+3x_1+2x_2\right)^2-2\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)+2\left|24m^2-m-1\right|=900\)
<=> \(\left(10m\right)^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|=900\)
<=> \(52m^2+2m+2+2\left|24m^2-m-1\right|=900\)
<=> \(\left|24m^2-m-1\right|=449-26m^2-m\)
<=> \(\orbr{\begin{cases}24m^2-m-1=449-26m^2-m\left(đk:m\ge\frac{1+\sqrt{97}}{48}hoặcx\le\frac{1-\sqrt{97}}{48}\right)\\24m^2-m-1=26m^2+m-449\left(đk:\frac{1-\sqrt{97}}{48}\le x\le\frac{1+\sqrt{97}}{48}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}50m^2=1\\2m^2+2m-448=0\end{cases}}\)<=> \(\orbr{\begin{cases}m=\pm\frac{1}{5\sqrt{2}}\\m^2+m-224=0\end{cases}}\) (\(\orbr{\begin{cases}m=\frac{1}{5\sqrt{2}}\left(ktm\right)\\m=-\frac{1}{5\sqrt{2}}\left(tm\right)\end{cases}}\))
<=> \(m^2+m-224=0\)(có 2 nghiệm ko thõa mãn -> tự tính)
a) \(\Delta'=m^2+m+1>0\forall m\). Do đó phương trình cho luôn có hai nghiệm phân biệt
Khi đó, theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Suy ra \(\hept{\begin{cases}5\left(x_1+x_2\right)=10m\\\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6\left(x_1+x_2\right)^2+x_1x_2=24m^2-m-1\end{cases}}\)
Áp dụng định lí Viet đảo ta có được phương trình:
\(X^2-10mX+24m^2-m-1=0\left(1\right)\) nhận \(2x_1+3x_2\) và \(3x_1+2x_2\) làm nghiệm.
b) Để \(\left(1\right)\) có nghiệm thì \(100m^2\ge4\left(24m^2-m-1\right)\Leftrightarrow4m^2+4m+4\ge0\left(đ\right)\)
Ta có \(\left|X_1\right|+\left|X_2\right|=30\Leftrightarrow\left(X_1+X_2\right)^2-2X_1X_2+2\left|X_1X_2\right|-900=0\)
\(\Rightarrow100m^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|+900=0\)
+) Nếu \(24m^2-m-1\ge0\) thì \(100m^2+900=0\Leftrightarrow m=\pm3\)
+) Nếu \(24m^2-m-1< 0\) thì \(4m^2+4m+904=0\)(Vô nghiệm)
Vậy \(m=\pm3.\)