K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

9 tháng 2 2021

Em yêu anh

Bài làm

a) Ta có: n3− 8n+ 2n ⋮ ( n+ 1 )

⇔ ( n+ n ) − (8n+ 8 ) + n + 8 ⋮ n+ 1

⇔ n( n+ 1 ) − 8( n2+1 ) + n + 8 ⋮ n+ 1

⇒ n + 8 ⋮  n2 + 1⇒ ( n − 8 )( n + 8 ) ⋮ n2 + 1

⇔ ( n+ 1 )   − 65 ⋮ n+ 1

⇒ 65 ⋮ n+ 1 mà dễ dàng nhận thấy n+ 1 ≥ 1 nên n+ 1 ϵ 1 ; 5 ; 13 ; 65 hay nϵ 0 ; 4 ; 12 ; 64nϵ 0 ; 4 ; 12 ; 64

⇒n ϵ − 8 ; −2 ; 0 ; 2 ; 8 
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị x = −8 ; 0 ; 2x = −8 ; 0 ; 2

# Chúc bạn học tốt #

2 tháng 12 2017

a) x: x n = x3 - n

b) xn : x5 = xn - 5

5 tháng 11 2019

c. Câu hỏi của Toàn Lê - Toán lớp 8 - Học toán với OnlineMath