Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dap an
91.
Ta ca y=7-x. Thay vao tinh y=4, x=3.
Thay vao bieu thuc =91
\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{y}=4\\x+1+y=8\end{cases}}\)
đặt t = \(\sqrt{x+1}\); z = \(\sqrt{y}\)
\(\Rightarrow\hept{\begin{cases}t+z=4\\t^2+z^2=8\end{cases}}\)
\(\left(t+z\right)^2=t^2+2tz+z^2=8+2tz=16\Rightarrow tz=4\)
\(\Rightarrow\hept{\begin{cases}t+z=4\\t\cdot z=4\end{cases}}\Rightarrow t=z=2\)
\(\sqrt{x+1}=2\Rightarrow x=3;\sqrt{y}=2\Rightarrow y=4\)
\(\Rightarrow x^3+y^3=3^3+4^3=91\)
Cái đầu là tính à?
Ta có: \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=\left(\sqrt{15}\right)^2+2.2\sqrt{3}.\sqrt{15}+\left(2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=15+12\sqrt{5}+12+12\sqrt{5}\)
\(=27+24\sqrt{5}\)
Sau:
Ta thấy: Điều kiện để \(\sqrt{-\left|x+5\right|}\) có nghĩa là \(-\left|x+5\right|\ge0\left(\forall x\right)\)
Mà \(-\left|x+5\right|\le0\left(\forall x\right)\) nên dấu "=" xảy ra khi: \(\left|x+5\right|=0\Rightarrow x=-5\)
Vậy khi x = -5 thì \(\sqrt{-\left|x+5\right|}\) có nghĩa
Làm lại ý 2
\(\sqrt{-\left|x+5\right|}\)có nghĩa
\(\Leftrightarrow-\left|x+5\right|\ge0\)
\(\Leftrightarrow\left|x+5\right|\le0\)
\(\Leftrightarrow x+5\le0\)
\(\Leftrightarrow x\le-5\)
\(F=\left(\dfrac{1}{3-\sqrt{5}}+\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{6}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}:\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{3}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{3}{2\sqrt{5}}\)
\(G=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\dfrac{\sqrt{5+2\sqrt{5}+1}+\sqrt{9-2.3.\sqrt{5}+5}-2}{\sqrt{2}}=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(H=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}.\sqrt{x-2}+2}=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\left(x\ge2\right)\)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)
\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
mà 2 căn 21<4 căn 6
nên căn 3+căn 7<2+căn 6
2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)
\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)
mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)
nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)
3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)
\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
mà căn 11>căn 3
nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)
\(1.\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}+2}=\dfrac{\sqrt{3}+2+2-\sqrt{3}}{3-4}=-4\)\(2.\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}=\dfrac{8+6\sqrt{2}+6\sqrt{2}-8}{16-18}=\dfrac{-12\sqrt{2}}{2}-6\sqrt{2}\)\(3.\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}=\sqrt{8-2.2\sqrt{2}.3+9}+\sqrt{8+2.2\sqrt{2}.3+9}=\sqrt{\left(2\sqrt{2}-3\right)^2}+\sqrt{\left(2\sqrt{2}+3\right)^2}=\text{|}2\sqrt{2}-3\text{|}+\text{|}2\sqrt{2}+3\text{|}=4\sqrt{2}\)
\(4.\sqrt{29-4\sqrt{7}}-\sqrt{29+4\sqrt{7}}=\sqrt{28-2.2\sqrt{7}.1+1}-\sqrt{28+2.2\sqrt{7}.1+1}=\sqrt{\left(2\sqrt{7}-1\right)^2}-\sqrt{\left(2\sqrt{7}+1\right)^2}=\text{|}2\sqrt{7}-1\text{|}-\text{|}2\sqrt{7}+1\text{|}=-2\)\(5.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{7+2\sqrt{7}.1+1}-\sqrt{7-2\sqrt{7}.1+1}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{\text{|}\sqrt{7}+1\text{|}-\text{|}\sqrt{7}-1\text{|}}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\dfrac{2\sqrt{2}}{2}\)
1)
\(\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}+2}\)
\(=\dfrac{\left(\sqrt{3}+2\right)-\left(\sqrt{3}-2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}\)
\(=\dfrac{4}{\left(\sqrt{3}\right)^2-2^2}\)
\(=\dfrac{4}{3-4}=-4\)
Xấp xỉ 7,94
Okokok!!!
7.93725....