Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{3sinx-cosx-4}{2sinx+cosx-3} \Leftrightarrow (2sinx+cosx-3)y=3sinx-cosx-4 \Leftrightarrow (3-2y)sinx+(y-1)cosx=4-3y \)
\(\Rightarrow (3-2y)^2+(y-1)^2 ≥ (4-3y)^2 \Leftrightarrow 5y^2−14y+10 ≥ 16−24y+9y^2 \Leftrightarrow 1 ≤ y ≤ \dfrac{3}{2}\)
Vậy hàm số không có giá trị nguyên.
a) Dat sin x = y
y2 - 3y - 4= 0
y = -1 hoac y = 4 (loai)
voi y = -1 thi sin x = -1 => \(x=-\frac{\pi}{2}+2k\pi\)
b) Chia hai ve cho 2 ta co:
\(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin2x\)
\(cos\frac{\pi}{6}sinx+sin\frac{\pi}{6}cosx=sin2x\)
\(sin\left(x+\frac{\pi}{6}\right)=sin2x\)
\(x+\frac{\pi}{6}=2x+2k\pi\) hoac \(x+\frac{\pi}{6}=\pi-2x+2k\pi\)
\(x=\frac{\pi}{6}-2k\pi\) hoac \(x=-\frac{\pi}{18}+2k\pi\)a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4
<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0
- sinx=1 => 2cos2x-2cosx+2=0
pt trên vn
b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0
<=> cos(2sinx-1)+2sin2x+3sinx-2=0
<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0
<=> (2sinx-1)(cosx+sinx+2)=0
<=> sinx=1/2 hoặc cosx+sinx=-2(vn)
<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)
Lời giải:
Đặt \(3\sin x+4\cos x=t\)
Áp dụng BĐT Bunhiacopxky:
\(t^2=(3\sin x+4\cos x)^2\leq (3^2+4^2)(\sin ^2x+\cos ^2x)=25\)
\(\Rightarrow -5\leq t\leq 5\)
Với $t\in [-5;5]$ ta có:
\(y=3t^2+4t+1\leq 3.25+4.5+1=96\)
Mặt khác: \(y=3t^2+4t+1=3(t+\frac{2}{3})^2-\frac{1}{3}\)
\((t+\frac{2}{3})^2\geq 0, \forall t\in [-5;5]\Rightarrow y\geq -\frac{1}{3}\)
Vậy \(y_{\min}=\frac{-1}{3}; y_{\max}=96\)
lim x → π 3 2 sin 2 x + sin x - 1 2 sin 2 x - 3 sin x + 1 = 1 + 3 5 - 3 3
Hự, toán lp 11 lận
Trả lơi
Bạn có thể qua hh.vn nha
Nếu ko ai trả lời
Chúc bạn học tốt !