Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{-1}{2xy^2}.\frac{-3}{4x^3y}.2y\)=\(\frac{6y}{8x^4y^3}\)=\(\frac{6}{8x^4y^2}\)
vì x4y2>hoặc =0
=>8 x4y2>hoặc =0
=> 6/8x4y2> hoặc =0
vậy 3 đơn thức ko thể có cùng giá trị âm
mik mới học mà
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)
Vậy \(B< 1\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)
\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)
\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)
\(\rightarrow B< 1\rightarrowđpcm\)
\(\left(\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{17}{4}-\dfrac{3}{4}\)
\(=\left(\dfrac{9}{12}+\dfrac{8}{12}\right):\dfrac{17}{4}-\dfrac{3}{4}\)
\(=\dfrac{17}{12}:\dfrac{17}{4}-\dfrac{3}{4}\)
\(=\dfrac{17.4}{17.12}-\dfrac{3}{4}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}\)
\(=\dfrac{4}{12}-\dfrac{9}{12}\)
\(=-\dfrac{5}{12}\)
\(\Leftrightarrow x\cdot\dfrac{1}{5}=\dfrac{1}{3}\)
hay \(x=\dfrac{5}{3}\)
76 phần 255