Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Gọi d là ƯCLN của n+1 và 2n+3, ta có:
(2n+3)-(n+1) chia hết cho d
=> (2n+3)-2(n+1) chia hết cho d
=> 2n+3-2n-2 chia hết cho d
=> 2n-2n+3-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy n+1/2n+3 là 2 phân số tối giản
e) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản
f) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
Câu b lm v ko ra đc, lm theo cách này ms ra
Gọi d là ước nguyên tố chung của 9n + 24 và 3n + 4
... như của bn
=> 12 chia hết cho d
Mà d nguyên tố nên d ϵ {3; 4}
+ Với d = 3 thì \(\begin{cases}9n+24⋮3\\3n++4⋮3\end{cases}\), vô lý vì \(3n+4⋮̸3\)
+ Với d = 4 thì \(\begin{cases}9n+24⋮4\\9n+12⋮4\end{cases}\)=> \(9n⋮4\)
Mà (9;4)=1 \(\Rightarrow n⋮4\)
=> n = 4.k (k ϵ N)
Vậy với \(n\ne4.k\left(k\in N\right)\) thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.
\(a,2n+3⋮6n+4\Leftrightarrow6n+9⋮6n+4\Leftrightarrow6n+9-6n-4⋮6n-4\Leftrightarrow5⋮6n-4\Leftrightarrow6n-4\in\left\{-5;5;1;-1\right\}\Leftrightarrow6n\in\left\{-1;9;5;-3\right\}\Leftrightarrow n\in\left\{-\dfrac{1}{6};1,5;\dfrac{5}{6};-0,5\right\}\)
714n nha
( 3+5+9+6+85+99+572+25 ). n = 714n