Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai bài đó chung 1 bài hay 2 câu khác nhau vậy
a)n+2 chia hết cho n-1
n-1 chia hết cho n-1
suy ra n+2 - n-1 chia hết cho n -1
suy ra 3 chia hết cho n-1
suy ra n-1 thuộc ước của 3 ={-1,-3,1,3}
b) 3n-5 chia hết cho n-2
3n-6 chia hết cho n-2
suy ra 3n-5 - 3n-6 chia hết cho n-2
suy ra 1 chia hết cho n-2
suy ra n-2 thuộc ước của 1 ={-1,1}
NHẤN MỎI TAY V~
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
Chứng minh bằng phương pháp phản chứng:
Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì:
A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
Với n = k + 1 thì
A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121
⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121
⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121
⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121
⇒ 2k + 4 ⋮ 121
⇒ 2.(k + 2) ⋮ 121
⇒ k + 2 ⋮ 121 (1)
Mà ta có: k2 + 3k + 5 ⋮ 121
⇒ k(k + 2) + (k + 2) + 3 ⋮ 121
⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)
Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)
Vậy điều giả sử là sai hay
A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
Xét n = 5k;
=> 3n+2 = 15k + 2 (không chia hết cho 5)
xét n = 5k+1:
=> 3n+2 =15k+5(thỏa mãn)
Xét n = 5k+2:
=> 3n + 2 = 15k + 8 (không chia hết cho 5)
Xét n = 5k+3:
=> 3n+2 = 15k+11(không chia hết)
Xét n = 5k+4:
=> 3n+2 = 15k + 14(không chia hết)
Đáp số: n = 5k+1(k thuộc tập hợp N)