Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)
\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)
b) \(2^{n+1}+4.2^n=3.2^7\)
\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)
c) \(3^{n+2}-3^{n+1}=486\)
\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)
\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)
d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)
\(B=\left(3^{n+3}-2^{n+3}+3^{n+1}-2^{n+1}\right)\)
\(=3^{n+1}\left(3^2+1\right)-2^{n+1}\left(2^2+1\right)\)
\(=3^{n+1}.10-2^{n+1}.5\)
\(=3^{n+1}.10+2^n.2.5\)
\(=3^{n+1}.10+2^n.10\)
\(=10\left(3^{n+1}+2^n\right)\)\(⋮\)\(10\)\(\left(đpcm\right)\)
\(Â=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+1}\)
\(=3^n\left(3^3+3\right)+2^{n+1}\left(2^2+1\right)\)
\(=3^n.30+2^{n+1}.\left(2^2+2\right).\frac{1}{2}\)
\(=3^n.30+2^{n+1}.6.\frac{1}{2}\)
Mà \(3^n.30⋮6;2^{n+1}.6.\frac{1}{2}⋮6\)
\(\Rightarrow3^n.30+2^{n+1}.6.\frac{1}{2}⋮6\)
\(\Rightarrow A⋮6\left(đpcm\right)\)
A= 3n+3+3n+1+2n+2+2n+1
A= (3n+3+3n+1) + (2n+2+2n+1)
A= 3n(33+3) + 2n(22+2)
A= 3n.(27+3) + 2n(4+2)
A= 3n.30 + 2n.6
A=3n.5.6 + 2n.6
A= (3n.5+2n).6\(⋮\)6 (đpcm)
Tự kết luận nha :))
\(3^{n+2}+3^{n+1}-3^n=891\)
\(3^n\times3^2+3^n\times3-3^n=891\)
\(3^n\times\left(9+3-1\right)=891\)
\(3^n\times11=891\)
\(3^n=891\div11\)
\(3^n=81\)
\(3^n=3^4\)
\(n=4\)
\(3^{n+2}+3^{n+1}-3^n=891\)
\(\Leftrightarrow3^n.3^2+3^n.3-3^n=891\)
\(\Leftrightarrow3^n\left(3^2+3-1\right)=891\)
\(\Leftrightarrow3^n.11=891\)
\(\Leftrightarrow3^n=81\)
\(\Rightarrow n=4\)