![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}+\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}\left(\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right)=\frac{1}{3}\cdot\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
P/s: pải c/m 1/2*5+1/5*8+.....+1/(3n-1)*(3n+2)=n/2*(3n+2) chứ
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(3A=\frac{1}{2}-\frac{1}{3n+2}\)
\(3A=\frac{3n+2-2}{2\left(3n+2\right)}\)
\(A=\frac{3n}{2\left(3n+2\right)}\cdot\frac{1}{3}\)
\(A=\frac{n}{2\left(3n+2\right)}\left(đpcm\right)\)
Xét vế trái, ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2.5}+\frac{3}{5.8}+.....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n-2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}.\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
Vế trái đúng bằng vế phải. Đẳng thức đã được chứng tỏ là đúng
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 38-3n : n =-3+38/n vậy n là Ư(38) nên n = 1 ; 2 ; 19 ; 38
b) ( n+5 ) : ( n + 1 ) hay ( n +1 + 4 ) : (n+1) vậy n+1 là Ư(4) nên n+1 = 1 ; 2 ; 4. Vậy n = 0;1;3
c) ( 3n + 4 ) :( n + 1 ) hay ( 3n + 1 + 3 ) : ( n + 1 ) vậy n + 1 là Ư(3) nên n + 1 = 1;3. Vậy n = 0;2
d) ( 2n + 1 ) : ( 16 - 3n ) hay 3(2n+1) : ( 16 - 3n ) hay 3(2n + 1 ) : 2(16 - 3n ) hay ( 6n + 3 ) : ( 32 - 6n ). Vậy ( 6n + 3 + 32 - 6n ) chia hết cho 16 - 3n hay 35 chia hết cho ( 16 - 3n ). 16 - 3n là Ư ( 35 ). Vậy 16 -3n = 1;5;7;35. n = 5;3 là thích hợp.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)
\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
help