Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a3 + b3 + c3 – 3abc
Ta sẽ thêm và bớt 3a2b +3ab2 sau đó nhóm để phân tích tiếp
a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)
= (a + b)3 +c3 – 3ab(a + b + c)
= (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]
= (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]
= (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
2) x5 – 1
Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm:
x5 – 1 = x5 – x + x – 1
= (x5 – x) + (x – 1)
= x(x4 – 1) + ( x – 1)
= x(x2 – 1)(x2 + 1) + (x - 1)
= x(x +1)(x – 1)(x2 + 1) + ( x – 1)
= (x – 1)[x(x + 1)(x2 + 1) + 1].
3) 4x4 + 81
Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:
4x4 + 81 = 4x4 + 36x2 + 81 – 36x2
= ( 2x2 + 9)2 – (6x)2
= (2x2 + 9 – 6x)(2x2 + 9 + 6x)
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2 (1)
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3
= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3 (2)
Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3
⇒ A ⋮ 6
Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$
$=3^{n+1}(9+1)+2^{n+2}(2+1)$
$=3^{n+1}.10+2^{n+2}.3$
$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)
Ta có :
\(3n+1⋮2n-3\Rightarrow2\left(3n+1\right)⋮2n-3\Rightarrow6n+2⋮2n-3\) (1)
Ta lại có:
\(2n-3⋮2n-3\Rightarrow3\left(2n-3\right)⋮2n-3\Rightarrow6n-9⋮2n-3\) (2)
Trừ (1) cho (2), ta được :
\(\left(6n+2\right)-\left(6n-9\right)⋮2n-3\)
\(\Rightarrow11⋮2n-3\)
\(\Rightarrow2n-3\inƯ\left(11\right)\)
\(\Rightarrow2n-3\in\left\{1;-1;11;-11\right\}\)
\(\Rightarrow2n\in\left\{4;2;14;-8\right\}\)
\(\Rightarrow n\in\left\{2;1;7;-4\right\}\)
Vậy \(n\in\left\{2;1;7;-4\right\}\)
đề là j có thiếu k v