Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vế trái: 4/(x+2).(x+6)+7/(x+6).(x+13)
<=>1/x+2 -1/x+6 +1/x+6 -1/x+13
<=>1/x+2-1/x+13
=> 1/x+2-1/x+13=2x+1/(x+2).(x+16) -3/(x+13).(x+16)
<=>1/x+2 - 1/x+13 + 1/x+13 - 1/x+16=2x+1/(x+2).(x+16)
<=>1/x+2 - 1/x+16=2x+1/(x+2).(x+16)
<=> 14/(x+2).(x+16)= 2x+1/(x+2).(x+16)
<=> 2x+1=14
<=> 2x=14-1
<=> 2x=13
<=> x=13:2
<=> x=13/2
Vậy x=13/2
Chúc bạn học tốt
a: \(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
=>\(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(-\dfrac{3}{2}x-\dfrac{1}{2}x=\dfrac{1}{2}-\dfrac{1}{4}\)
=>\(-2x=\dfrac{1}{4}\)
=>\(2x=-\dfrac{1}{4}\)
=>\(x=-\dfrac{1}{4}:2=-\dfrac{1}{8}\)
b: ĐKXĐ: x>=0
\(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
=>\(\left\{{}\begin{matrix}6-3\sqrt{x}=0\\\left|x\right|-7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\sqrt{x}=6\\\left|x\right|=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-7\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{x-4}-\dfrac{1}{x-7}+\dfrac{1}{x-7}-\dfrac{1}{x-13}+\dfrac{1}{x-13}-\dfrac{1}{x-28}-\dfrac{1}{x-28}=\dfrac{-5}{2}\)
\(\Leftrightarrow\dfrac{1}{x-4}-\dfrac{2}{x-28}=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{x-28-2x+8}{\left(x-4\right)\left(x-28\right)}=\dfrac{-5}{2}\)
\(\Leftrightarrow-5\left(x^2-32x+112\right)=2\left(-x-20\right)\)
\(\Leftrightarrow-5x^2+160x-560=-2x-40\)
\(\Leftrightarrow-5x^2+162x-520=0\)
\(\text{Δ}=162^2-4\cdot\left(-5\right)\cdot\left(-520\right)=15844\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{162-2\sqrt{3961}}{10}\\x_2=\dfrac{162+2\sqrt{3961}}{10}\end{matrix}\right.\)
a: \(=\dfrac{2^{13}\cdot5^7\left(2^{17}+5^{20}\right)}{2^{10}\cdot5^7\left(2^{17}+5^{20}\right)}=2^3\)
b: \(M=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(=3^{2\cdot1\cdot13\cdot12}=3^{312}\)
\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2=\left(\frac{x}{5}\right)^2+\left(\frac{x}{6}\right)^2+\left(\frac{x}{7}\right)^2\)
\(\frac{x^2}{2^2}+\frac{x^2}{3^2}+\frac{x^2}{4^2}=\frac{x^2}{5^2}+\frac{x^2}{6^2}+\frac{x^2}{7^2}\)
\(\frac{x^2}{2^2}+\frac{x^2}{3^2}+\frac{x^2}{4^2}-\frac{x^2}{5^2}-\frac{x^2}{6^2}-\frac{x^2}{7^2}=0\)
\(x^2.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}-\frac{1}{5^2}-\frac{1}{6^2}-\frac{1}{7^2}\right)=0\)
vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}-\frac{1}{5^2}-\frac{1}{6^2}-\frac{1}{7^2}\ne0\)nên \(x^2=0\)
\(\Rightarrow x=0\)
x^2(1/4+1/9+1/16-1/25-1/36/1/49)=0
mà (1/2+1/9=1/16-1/25-1/36-1/49)>0
=>x=0
\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)
\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)
\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)
\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)
\(3x+21=4x-8+6\)
\(3x+21-4x+8-6=0\)
\(-x+23=0\)
\(-x=-23\)
\(\Rightarrow x=23\)
3 . ( x + 7 ) = 4 . ( x - 2 ) + 6
3x + 3 . 7 = 4x - 4 . 2 + 6
3x + 21 = 4x - 8 + 6
3x + 21 = 4x + ( - 8 + 6 )
3x + 21 = 4x - 2
21 + 2 = 4x - 3x
23 = 1x
1x = 23
x = 23 : 1
x = 23
Vậy x = 23