Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
\(\left|\frac{5}{-4}\right|-\left|\frac{1}{-3}\right|+-\frac{5}{6}-4\frac{1}{2}\)
\(=\left|-\frac{5}{4}\right|-\left|\frac{-1}{3}\right|+\frac{-5}{6}-\frac{9}{2}\)
\(=\frac{5}{4}-\frac{1}{3}+\frac{-5}{6}-\frac{9}{2}=-\frac{53}{12}\)
\(\frac{5}{8}-\left|-\frac{1}{12}\right|-3\frac{1}{4}+\left|-\frac{5}{6}\right|\)
\(=\frac{5}{8}-\frac{1}{12}-\frac{13}{4}+\frac{5}{6}=-\frac{15}{8}\)
\(\frac{3}{-7}+\left|-\frac{5}{12}\right|+3\frac{1}{4}+\left|-\frac{5}{6}\right|\)
\(=\frac{-3}{7}+\frac{5}{12}+\frac{13}{4}+\frac{5}{6}=\frac{57}{14}\)
\(1\frac{3}{5}-\left|\frac{1}{-4}\right|+\frac{2}{-3}-\left|-\frac{1}{2}\right|\)
\(=\frac{8}{5}-\left|\frac{-1}{4}\right|+\frac{-2}{3}-\frac{1}{2}\)
\(=\frac{8}{5}-\frac{1}{4}+\frac{-2}{3}-\frac{1}{2}\)
\(=\frac{27}{20}+\frac{-7}{6}=\frac{27}{20}-\frac{7}{6}=\frac{11}{60}\)
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
x = 3/20
x = -3/20
bài này zễ quá mà