Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số đó là ab
=> Số sau khi viết thêm là abba
Ta có : abba = 1000a + 100b + 10b + a = 1001a+ 110b
= 11.91.a + 11.10.b = 11.( 91a + 10b) chia hết cho 11
Vậy abba chia hết cho 11(Đpcm)
Bài b mình chưa biết nha
k mình nha
a, Gọi số đó là ab.
Ta có:
abba = a x 1000 + b x 100 + b x 10 + a = a x 1001 + b x 110 = 11 x ( 91 x a + 10 x b ) chia hết cho 11.
b, Gọi số đó là abc
Ta có:
abccba = a x 100000 + b x 10000 + c x 1000 + c x 100 + b x 10 + a
= a x 100001 + b x 10010 + c x 1001 = 11 x ( 9091 x a + 910 x b + 91 x c ) chia hết cho 11
a.Gọi số có 2 chữ số đó là ab
=> số sau khi viết thêm là abba
ta có:abba=1000a+100b+10b+a=1001a+110b
ta thấy 1001 chia hết cho 11 và 110 cũng thế =>1001a+110b chia hết cho 11(Đpcm)
b.ta có số :abccba
ta có:abccba=100000a+10000b+1000c+100c+10b+a=100001a+10010b+1100c
vì 100001;10010;11000 đều chia hết cho 11 =>abccba chia hết cho 11
\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }^2_{ }\tan\Phi}\)
1) gọi số đó là ab
theo bài ra ta có ab+ba=a+10b+b+10a=(10a+a)+(10b+b)=11a+11b
Vì 11a và 11b chia hết cho 11 nên 11a+11b chia hết cho 11
Vậy ab+ba chia hết cho 11
2) - a.b.c+ 2=333
a.b.c =333-2=331
- a.b.c+b=335
b=335-331=2
- a.b.c+c=341
c= 341-331 =10
=> Ta có: a.b.c=331
mà b=4; c=10
=>4.10.c=331
=>40.c=331
mà 331 lại là số nguyên tố
=> ko tồn tại các số tự nhiên a, b ,c nào
3) Có số abcd = 100ab +cd =200cd +cd (vì ab=2cd)
hay = 201cd
mà 201 chia hết cho 67
Do đó nếu ab=2cd thì abcd chia hết cho 67
Lời giải:
Gọi số tự nhiên có 2 chữ số là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a\neq 0$.
Khi viết thêm đằng sau số đó chính 2 chữ số đó theo thứ tự ngược lại ta được số: $\overline{abba}$
Có:
$\overline{abba}=1000a+100b+10b+a=1001a+110b=11(91a+10b)\vdots 11$
Ta có đpcm.
Gọi số có 2 chữ số đó là ab
=> Số sau khi viết thêm là abba
Ta có: abba = 1000a + 100b + 10b + a = 1001a + 110b
= 11.91.a + 11.10.b = 11.(91a + 10b) chia hết cho 11
Vậy abba chia hết cho 11 (Đpcm)