Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3a-1\right)^2+2\left(3a-1\right)\left(2+6\right)+\left(2+6\right)^2\)
\(=\left(3a-1+8\right)^2\)
\(=\left(3a+7\right)^2\)
Ta có
\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\left(1\right)\)
Ta lại có
\(6a^2-15ab+5b^2=0\)
\(\Leftrightarrow9a^2-b^2=3a^2+15ab-6b^2\left(2\right)\)
Từ (1) và (2) => Q = 1
Đề như này đúng chưa ạ?: (x-2)(x2 + 2x+4) - 128 + x3
=x3 - 23 - 128 + x3
= 2x3 -136
\(a+b=1\Rightarrow b=1-a\Rightarrow b^2=\left(1-a\right)^2\)
\(\Rightarrow3a^2+b^2=3a^2+\left(1-a\right)^2=4a^2-2a+1\)
Mà \(4a^2-2a+1=\left(2a\right)^2-2.2a.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(2a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\left(đpcm\right)\)
\(\left(3a+4\right)^2+\left(4a-1\right)^2+\left(2+5a\right)\left(2-5a\right)=9a^2+24a+16+16a^2-8a+1+4-25a^2=16a+21\)
a: Sửa đề: \(A=\left(3a-1\right)\left(9a^2+3a+1\right)-\left(3a+1\right)\left(9a^2-3a+1\right)+2a+2\)
\(=27a^3-1-27a^3-1+2a+2=2a=2\cdot5=10\)
b: \(=4x^2+2x+1-20x^3+10x^2+4x\)
\(=-20x^3+14x^2+6x+1\)
c: \(=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)
\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
1) \(\left(a+b\right)^2\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\left(dpcm\right)\)
2) \(\left(a-b\right)^3\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)
\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)
\(\left(3a-1\right)^2-2\left(3a-1\right)\left(2+b\right)+\left(2+b\right)^2\)
\(=\left(3a-1-b-2\right)^2\)
\(=\left(3a-b-3\right)^2\)