K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}=\frac{2^{19}.3^9+3^9.2^{18}.5}{2^{19}.3^9+3^{10}.2^{20}}\)

\(=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{7}{2.7}=\frac{1}{2}\)

13 tháng 9 2020

\(M=\frac{2^{19}\cdot27^3+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\) 

\(=\frac{2^{19}\cdot\left(3^3\right)^3+3\cdot5\cdot\left(2^2\right)^9\cdot\left(3^2\right)^4}{6^9\cdot2^{10}+6^{10}\cdot2^{10}}\) 

\(=\frac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3\cdot3^8}{6^9\cdot2^{10}\left(6+1\right)}\) 

\(=\frac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3^9}{6^9\cdot2^{10}\cdot7}\) 

\(=\frac{2^{18}\cdot3^9\left(2+5\right)}{2^{10}\cdot2^9\cdot3^9\cdot7}\) 

\(=\frac{2^{18}\cdot3^9\cdot7}{2^{19}\cdot3^9\cdot7}\) 

\(=\frac{1}{2}\)

24 tháng 9 2016

\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)

\(=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)

\(=\frac{2^{19}.3^9+2^{19}.3^9.5}{2^{19}.3^9+2^{20}.3^{10}}\)

\(=\frac{2^{19}.3^9.\left(1+5\right)}{2^{19}.3^9\left(1+2.3\right)}\)

\(=\frac{6}{7}\)

\(=\dfrac{\left[\dfrac{2^{13}\cdot3^{14}}{3^{13}}+\dfrac{3^{18}}{2^{12}}:\dfrac{3^{12}}{2^{24}}\right]}{2^{12}\cdot3^4+2^{12}\cdot3^2}\)

\(=\dfrac{\left[\dfrac{2^{13}}{3}+\dfrac{2^{12}}{3^6}\right]}{2^{12}\cdot3^2\cdot\left(3^2+1\right)}=\dfrac{2^{12}\cdot\left(\dfrac{2}{3}+\dfrac{1}{3^6}\right)}{2^{12}\cdot3^2\cdot10}\)

\(=\left(\dfrac{487}{729}\right):\dfrac{1}{90}=\dfrac{4870}{81}\)

5 tháng 10 2017

\(2^{12}.3^5-4^6.9^2=663552\)

\(\left(2^2.3\right)^6+8^4.3^5=3981312\)

5 tháng 10 2017

\(\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^4}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^4}=\frac{2^{12}\cdot\left(3^5-3^4\right)}{2^{12}\cdot\left(3^6+3^4\right)}=\frac{2^{12}\cdot3}{2^{12}\cdot3^4\cdot2\cdot5}=\frac{1}{3^3\cdot2\cdot5}=\frac{1}{270}\)