Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đề đúng:
Sử dụng liên hợp để trục căn thức ở mẫu:
\(\frac{1}{\sqrt{1}+\sqrt{5}}=\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{\sqrt{5}-1}{5-1}=\frac{\sqrt{5}-1}{4}\)
Tương tự như vậy ta sẽ có:
\(N=\frac{\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\frac{\sqrt{13}-\sqrt{9}}{\left(\sqrt{13}-\sqrt{9}\right)\left(\sqrt{13}+\sqrt{9}\right)}+\frac{\sqrt{17}-\sqrt{13}}{\left(\sqrt{17}-\sqrt{13}\right)\left(\sqrt{17}+\sqrt{13}\right)}\)
\(+\frac{\sqrt{21}-\sqrt{17}}{\left(\sqrt{21}-\sqrt{17}\right)\left(\sqrt{21}+\sqrt{17}\right)}+\frac{\sqrt{25}-\sqrt{23}}{\left(\sqrt{25}-\sqrt{23}\right)\left(\sqrt{25}+\sqrt{23}\right)}\)
\(=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+\frac{\sqrt{17}-\sqrt{13}}{4}+\frac{\sqrt{21}-\sqrt{17}}{4}+\frac{\sqrt{25}-\sqrt{23}}{4}\)
\(=\frac{\sqrt{5}-1+\sqrt{13}-\sqrt{9}+\sqrt{17}-\sqrt{13}+\sqrt{21}-\sqrt{17}+\sqrt{25}-\sqrt{23}}{4}\)
\(=\frac{\sqrt{5}-1-\sqrt{9}+\sqrt{21}+\sqrt{25}-\sqrt{23}}{4}=\frac{\sqrt{5}-1-3+\sqrt{21}+5-\sqrt{23}}{4}=\frac{1+\sqrt{5}+\sqrt{21}-\sqrt{23}}{4}\)
Dãy 1; 5; 9; 13; 17; ...; x là dãy cách đều 4 đơn vị. Dãy này có SSH: (x-1)/4 + 1
Tổng của dãy này là: (x + 1) [(x-1)/4 + 1]: 2
Do đó:
1+5+9+13+17+....+x=10100
<=> (x + 1) [(x-1)/4 + 1]: 2 = 10100
<=> (x + 1) [(x-1)/4 + 1] = 20200
<=> (x + 1) (x + 3) = 80800
<=> x2 + 4x - 80797 = 0
$\Delta $' =4 + 80797 = 80801....
... PT này có nghiệm vô tỉ => Không tìm được STN x nào thoả mãn.
A = ((20 + 1) . 20 : 2) . 2 = 420
B = (25 + 20) . 6 : 2 = 135
C = ( 33 + 26) . 8 : 2 = 236
D = (1 + 100) .100 : 2 = 5050
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}=6\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^2}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}=10\)
\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=2\sqrt{5}+4\sqrt{2}\)
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
b: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}\)
=6
c: Ta có: \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
d: Ta có: \(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}+\sqrt{53+4\sqrt{90}}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}\)
\(=2\sqrt{5}+4\sqrt{2}\)
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
cái này đâu ra z ???
nguyen van tuan: hì, xin lỗi, làm hơi tắt ^^!
\(\left(1\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}=\left(x+1\right)\left(x-\dfrac{23}{8}\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}-\left(x+1\right)\left(x-\dfrac{23}{8}\right)=0\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
=20*(-5)+23*(-30)
= -100-690
= -790