\(36_{ }\)≤\(6^x\) ≤ 1296<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

a) x= 2, 3...8

a: Ta có: \(36\le6^x\le1296\)

\(\Leftrightarrow2\le x\le4\)

hay \(x\in\left\{2;3;4\right\}\)

b: Ta có: \(100< 5^{2x-1}< 5^6\)

\(\Leftrightarrow2x-1\in\left\{3;5\right\}\)

\(\Leftrightarrow2x\in\left\{4;6\right\}\)

hay \(x\in\left\{2;3\right\}\)

20 tháng 3 2016

:\(\frac{1}{6}\)<\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+\(\frac{1}{7^2}\)+.....+\(\frac{1}{100^2}\)<\(\frac{1}{4}\)

=\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+\(\frac{1}{7^2}\)+.....+\(\frac{1}{100^2}\)<\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+.....+\(\frac{1}{99.100}\)

=\(\frac{1}{4}\)-\(\frac{1}{100}\)=\(\frac{24}{100}\)<\(\frac{25}{100}\)=\(\frac{1}{4}\)>\(\frac{20}{100}\)=\(\frac{1}{5}\)>\(\frac{1}{6}\)

Vậy \(\frac{1}{6}\)<\(\frac{1}{5}\)

20 tháng 3 2016

:$\frac{1}{6}$16 <$\frac{1}{5^2}$1‍52 +$\frac{1}{6^2}$162 +$\frac{1}{7^2}$‍172 +.....+$\frac{1}{100^2}$11002 <$\frac{1}{4}$14 

=>$\frac{1}{5^2}$152 +$\frac{1}{6^2}$162 +$\frac{1}{7^2}$172 +.....+ 

=> bạn biết làm rồi nên thôi 

=> nói thật ra là bí

1 tháng 7 2016

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)

                                                       \(>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)

                                                        \(>\frac{1}{5}-\frac{1}{101}\)\(>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

                                                       \(< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

                                                        \(< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

=> đpcm

Ủng hộ mk nha ^_-

1 tháng 7 2016

\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)

\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{5}-\frac{1}{101}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{100}\)

\(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(đpcm\right)\)

17 tháng 1 2016

ta có \(\frac{1}{a^2}>\frac{1}{a^2-a}=\frac{1}{a\left(a-1\right)}\)và \(\frac{1}{a\left(a-1\right)}=\frac{a-\left(a-1\right)}{a\left(a-1\right)}=\frac{a}{a\left(a-1\right)}-\frac{a-1}{a\left(a-1\right)}=\frac{1}{a-1}-\frac{1}{a}\)(với a>1) 

Do đó \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}>\frac{1}{6}\)Vậy \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{6}\)

13 tháng 5 2015

Ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\) ;  \(\frac{1}{3^2}<\frac{1}{2.3}\);  ... ; \(\frac{1}{100^2}<\frac{1}{99.100}\) (chung tử, mẫu nào lớn hơn thì bé hơn)

  Cộng vế theo vế ta được:  \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

 Mà  \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)***

                                                       \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)( -1/2 +1/2= 0 ; ...; -1/99+1/99=0)

                                                       \(=1-\frac{1}{100}<1\)

      Do đó : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}<1\)

 Vậy y <1 

  ***Chú ý: \(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{1.2}-\frac{1}{1.2}=1-\frac{1}{2}\).... các phân số khác làm tương tự như: \(\frac{1}{99.100}=\frac{100-99}{99.100}=\frac{100}{99.100}-\frac{99}{99.100}=\frac{1}{99}-\frac{1}{100}\)***

                                                      

 

11 tháng 4 2018

1/345

21 tháng 10 2015

Câu 1:

(57 + 59).(68 + 610).(24 - 42) = (57 + 59).(68 + 610).(24 - 24) = (57 + 59).(68 + 610).0 = 0

Câu 2:

(73 + 75).(54 + 56).(33.3 - 92) = (73 + 75).(54 + 56).(34 - 34) = (73 + 75).(54 + 56).0 = 0