Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3.\left(10:x\right)=111\)
\(\Rightarrow10:x=37\)
\(x=10:37\)
\(x=\frac{10}{37}\)
b)\(3.\left(10+x\right)=111\)
\(\Rightarrow10+x=37\)
\(x=37-10\)
\(x=27\)
c)\(3+\left(10.x\right)=111\)
\(\Rightarrow10x=108\)
\(x=108:10\)
\(x=\frac{54}{5}\)
d)\(3+\left(10+x\right)=111\)
\(\Rightarrow10+x=108\)
\(x=108-10\)
\(x=98\)
\(\frac{-5}{10}\)x\(\frac{-4}{10}\)x\(\frac{-3}{10}\)x\(\frac{-2}{10}\)x\(\frac{-1}{10}\)x \(0\) x...x\(\frac{4}{10}\)x\(\frac{5}{10}\)
= 0.
Chúc học tốt nhak bạn ^_^
a.
\(A=1+3+3^2+3^3+...+3^n\)
\(3A=3+3^2+3^3+3^4+...+3^{n+1}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{n+1}\right)-\left(1+3+3^2+3^3+...+3^n\right)\)
\(2A=3^{n+1}-1\)
\(A=\frac{3^{n+1}-1}{2}\)
b.
\(B=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\)
\(10B=10+\frac{1}{10}+\frac{1}{10^2}+...+\frac{1}{10^{98}}+\frac{1}{10^{99}}\)
\(10B-B=\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\right)-\left(10+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^{98}}+\frac{1}{10^{99}}\right)\)
\(9B=\frac{1}{10^{100}}-10\)
\(B=\frac{\frac{1}{10^{100}}-10}{9}\)
đặt A=1+10+10^2+10^3+..+10^10
10A=10+10^2+10^3+10^4+...+10^11
10A-A=10+10^2+10^3+10^4+...+10^11-1-10-10^2-10^3-...-10^10
9A=10^11-1
A=(10^11-1):9