Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
3s1=3+32+33+34+...+350
=>3s1-s1=3+32+33+34+...+350-1-3-32-33-...-349
=>2s1=350-1
=>a1=(350-1)/2
Tính s2 tương tự như s1
ta lấy 4s2-s2 đoực kết quả s2=(450-1)/3
S1 = 1+3+32+33+34+..........+349
3S1 = 3+32+33+34+35+.........+350
3S1 - S1 = 3+32+33+34+35+.........+350 - (1+3+32+33+34+..........+349)
= 3+32+33+34+35+.........+350 - 1 - 3 - 32 - 33 - 34-..........-349
2S1 = 350 - 1
S1 =\(\frac{3^{50}-1}{2}\)
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Ta có " (x - 5)7 = (x - 5)4
=> (x - 5)7 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)3 - 1] = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^3-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^3=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-5=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
a) x+2x+...+50x =2550
x. [ 1+2+3+....+50]=2550
ta co :
so so hang cua day 1;2;3;4;...;50:
[50-1]:1+1=50
tong cua day tren la :
[50+1].50:2=1275
=> x.1275=2550
x=2550:1275
vay x=2
a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)
\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)
\(=3^2-\left(120-2\cdot89\right)\)
\(=9--58=9+58=67\)
1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)
\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)
\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)
\(=9-\left[120-89\cdot2\right]\)
\(=9-\left[120-178\right]=9-(-58)=67\)
b, Tương tự như bài a
2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+32=56+56\)
\(\Leftrightarrow4^x\cdot5+32=112\)
\(\Leftrightarrow4^x\cdot5=80\)
\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,24:(2x-1)^3-2=1\)
\(\Leftrightarrow24:(2x-1)^3=3\)
\(\Leftrightarrow(2x-1)^3=8\)
\(\Leftrightarrow(2x-1)^3=2^3\)
\(\Leftrightarrow2x-1=2\)
Làm nốt là xong thôi
Bài 1:
\(2B=2^2+2^3+2^4+2^5+...+2^{101}\\ \Rightarrow2B-B=2^{101}-2\\ \Leftrightarrow B=2^{101}-2\)
\(3C=3+3^2+3^3+3^4+...+3^{2004}\\ \Rightarrow3C-C=3^{2004}-3\\ \Leftrightarrow2C=3^{2004}-3\\ \Leftrightarrow C=\frac{3^{2004}-3}{2}\)
Mấy câu sau tương tự nhân 4 và 5 nhé bạn!
Bài 2: Giải theo lớp 6 nhé! :) Mình nghĩ đề bài cần a nguyên nữa nhé nếu không giải theo lớp 8,9 mất rồi! :)
\(a,2a+27⋮2a+1\\ \Leftrightarrow2a+1+26⋮2a+1\\ \Rightarrow26⋮2a+1\left(vì2a+1⋮2a+1\right)\\ \Rightarrow2a+1\inƯ_{\left(26\right)}mà2a+1lẻnên:\\ 2a+1\in\left\{1;-1;13;-13\right\}\\ \Leftrightarrow a\in\left\{0;-1;6;-7\right\}\\ Vậy...\)
Mấy bài sau tương tự nhé! :)
Lời giải:
Đặt $A=5+4^2+4^3+....+4^{49}$
$A=1+4+4^2+4^3+...+4^{49}$
$4A=4+4^2+4^3+....+4^{50}$
$\Rightarrow 4A-A=4^{50}-1$
$\Rightarrow 3A=4^{50}-1$
$\Rightarrow 4^{3x-1}-1=4^{50}-1$
$\Rightarrow 3x-1=50$
$\Rightarrow 3x=51$
$\Rightarrow x=17$