K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

1,(x+2) x (x-1)

= (x+2) . x - x+2

= x2 + 2x - x + 2

= x2+ 2x + (-x) +2

= x+ x + 2

mà (x+2).(x-1)>0

=>x+ x + 2>0.

=>x+ x > 1

=>x2 >1-x

=> x2>-x-1

do đó: không tìm được x cụ thể.

2,

18 tháng 2 2020

( x - 1 )2018 + ( y + 3 )2020 + ( z - 5 )2022 = 0

Ta thấy : ( x - 1 )2018 \(\ge0\) ; ( y + 3 )2020 \(\ge0\) ; ( z - 5 )2022 \(\ge0\)

\(\Rightarrow\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left(z-5\right)^{2022}\ge0\)

Theo đề,ta có : \(\left(x-1\right)^{2018}=\left(y+3\right)^{2020}=\left(z-5\right)^{2022}=0\)

+) \(\left(x-1\right)^{2018}=0\Rightarrow x-1=0\Rightarrow x=1\)

+) \(\left(y+3\right)^{2020}=0\Rightarrow y+3=0\Rightarrow y=-3\)

=) \(\left(z-5\right)^{2022}=0\Rightarrow z-5=0\Rightarrow z=5\)

Vậy : x = 1 ; y = -3 ; z = 5

18 tháng 2 2020

\(\text{Ta có:}\)

\(\hept{\begin{cases}\left(x-1\right)^{2018}\ge0\\\left(y+3\right)^{2020}\ge0\\\left(z-5\right)^{2022}\ge0\end{cases}}\text{mà:}\left(x-1\right)^{2018}+\left(y-2\right)^{2020}+\left(z-3\right)^{2022}=0\text{ nên:}\)

\(\hept{\begin{cases}\left(x-1\right)^{2018}=0\\\left(y+3\right)^{2018}=0\\\left(z-5\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-3\\z=5\end{cases}}\)

bạn tự kết luận

16 tháng 8 2017

Mn giải hộ mk nha...mk cần gấp

16 tháng 8 2017

1, x\(^2\) - 5x = 0

\(\Rightarrow\)x(x-5) = 0

Th1: x = 0

Th2: x- 5 =0

x = 5

2, \(|x-9|\) .( -8) = - 16

\(|x-9|\) = (- 16). ( -8) = 128

Th1: x - 9 = 128

x = 128 + 9 = 137

Th2: x - 9 = - 128

x = -128 + 9 = - 119

3, Th1: 4- 5x = 24

5x = 4- 24 = -20

x = - 20 :5 = -4

Th2: 4- 5x = -24

5x = 4- (-24) = 28

x = 28 :5= 5,6

Vì x < hoặc = 0 \(\Rightarrow\) x = -4

4, x.( x - 2) > 0

\(\Rightarrow\) x và ( x- 2) cùng dấu

Th1: x và (x -2) cùng dương

+ \(\Rightarrow\) x > 0

+ (x - 2) > 0 \(\Rightarrow\) x > 2

Th2: x và ( x- 2) cùng âm

+ \(\Rightarrow\) x < 0

+ ( x - 2) < 0 \(\Rightarrow\) x < 2

Từ 2 trường hợp trên \(\Rightarrow\) x > 2 hoặc x <2

5, x.( x - 2) < 0

\(\Rightarrow\) x và ( x- 2) khác dấu

Th1: x âm và ( x- 2) dương

+ \(\Rightarrow\) x < 0

+ (x -2 ) > 0 \(\Rightarrow\) x > 2

Th2: x dương và ( x- 2 ) âm

+ \(\Rightarrow\) x >0

+ (x - 2) < 0 \(\Rightarrow\) x < 2

21 tháng 6 2017

a) Ta có: \(x^2\ge0\forall x\in Q\)

\(y^2\ge0\forall x\in Q\)

\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)

\(\left(y-4\right)^2\ge0\forall x\in Q\)

\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)

c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)

\(\left|x-3\right|\ge0\forall x\in Q\)

\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)

21 tháng 6 2017

ghi đề kiểu này khó nhìn quá

2 tháng 4 2020

\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!

2 tháng 4 2020

20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
 

1 tháng 9 2020

a, ta có: (2x-3).(6-2x)=0

=>(2x-3)=0 hoặc (6-2x)=0

+, nếu 2x-3=0 thì x= 2/3 (1)

+, nếu 6-2x=0 thì x= 3 (2)

vì x thuộc Z nên từ (1) và(2) => x=3

vậy x=3

1 tháng 9 2020

a)TH1: 2x-3=0

              2x=3

                x=3/2

 TH2; 6-2x=0

             2x=6

               x=3

16 tháng 8 2017

dài quá à :(

16 tháng 8 2017

bạn lm 5 câu cuối cũng được rùi

6 tháng 3 2018

Ta có: \(\hept{\begin{cases}\left(x-1\right)^{2008}=\left[\left(x-1\right)^{1004}\right]^2\ge0\\\left(y-2\right)^{2020}=\left[\left(y-2\right)^{1010}\right]^2\ge0\\\left(x+y-z\right)^{2022}=\left[\left(x+y-z\right)^{1011}\right]^2\ge0\end{cases}}\)

=> Tổng của 3 số dương =0 khi và chỉ khi cả 3 số đều bằng 0

=> \(\hept{\begin{cases}\left[\left(x-1\right)^{1004}\right]^2=0\\\left[\left(y-2\right)^{1010}\right]^2=0\\\left[\left(x+y-z\right)^{1011}\right]^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x-1=0\\y-2=0\\x+y-z=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Đáp số: x=1, y=2, z=3