Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2
Đăng ít một thôi bạn :v
a) 3x - (3 - 2x) = 0
3x - 3 + 2x = 0
5x - 3 = 0
5x = 0 + 3
5x = 3
x = 3/5
b) (x + 2).3 - 4x.3 = 0
3.(x + 2) - 12.x = 0
3[x + 2 - (4x)] = 0
x + 2 - 4 = 0
-3x + 2 = 0
-3x = 0 - 2
-3x = -2
x = 2/3
c) (x - 2)(x - 4)(1 - 7x) = 0
x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0
x = 0 + 2 x = 0 + 4 -7x = 0 - 1
x = 2 x = 4 -7x = -1
x = 1/7
d) 4x2 - 1/4 = 0
4x2 = 0 + 1/4
4x2 = 1/4
x2 = 1/4 : 4
x2 = 1/16
x2 = (1/4)2
x = 1/4 hoặc x = -1/4
e) -3x2 + 48 = 0
3x2 - 48 = 0
3x2 = 0 + 48
3x2 = 48
x2 = 48 : 3
x2 = 16
x2 = 42
x = 4 hoặc x = -4
g) 3(1/2 - 1/3x)3 - 1/9 = 0
3(1/2 - x/3)3 - 1/9 = 0
3(1/2 - x/3)3 = 0 + 1/9
3(1/2 - x/3)3 = 1/9
(1/2 - x/3)3 = 1/9 : 3
(1/2 - x/3)3 = 1/27
(1/2 - x/3)3 = (1/3)3
1/2 - x/3 = 1/3
-x/3 = 1/3 - 1/2
-x/3 = -1/6
-x = -1/6.3
-x = -3/6 = -1/2
x = -1/2
m) 4x3 + 5x4 = 0
x3(4 + 5x) = 0
x = 0 hoặc 4 + 5x = 0
x = 0 5x = 0 - 4
5x = -4
x = -4/5
h) -x3 + 1/64x = 0
-x3 + x/64 = 0
x/64 - x3 = 0
x(1/64 - x3) = 0
x = 0 hoặc 1/64 - x2 = 0
x = 0 -x2 = 0 - 1/64
-x2 = -1/64
x2 = 1/64 = -+1/8
k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0
x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0
x4 + 2x2 + 3 + 3x3 + 3x = 0
(x3 + 2x2 + 3)(x + 1) = 0
Mà x3 + 2x2 + 3 # 0 nên
x + 1 = 0
x = -1
c) \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
Cho \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)=0\)
⇔ \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0+2\\x=0+4\\7x=1-0=1\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=2\\x=4\\x=1:7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=2;x=4\) và \(x=\frac{1}{7}\) đều là nghiệm của đa thức \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
d) \(4x^2-\frac{1}{4}\)
Cho \(4x^2-\frac{1}{4}=0\)
⇔ \(4x^2=0+\frac{1}{4}\)
⇔ \(4x^2=\frac{1}{4}\)
⇔ \(x^2=\frac{1}{4}:4\)
⇔ \(x^2=\frac{1}{16}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy \(x=\frac{1}{4}\) và \(x=-\frac{1}{4}\) đều là nghiệm của đa thức \(4x^2-\frac{1}{4}.\)
e) \(-3x^2+48\)
Cho \(-3x^2+48=0\)
⇔ \(-3x^2=0-48\)
⇔ \(-3x^2=-48\)
⇔ \(x^2=\left(-48\right):\left(-3\right)\)
⇔ \(x^2=16\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy \(x=4\) và \(x=-4\) đều là nghiệm của đa thức \(-3x^2+48.\)
Mình chỉ làm 3 câu thôi nhé.
Chúc bạn học tốt!
a) Đặt A(x)=0
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow4x=1\)
hay \(x=\frac{1}{4}\)
Vậy: \(x=\frac{1}{4}\) là nghiệm của đa thức A(x)=4x-1
b) Đặt B(x)=0
\(\Leftrightarrow4x-1-2x-3=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: x=2 là nghiệm của đa thức B(x)=4x-1-2x-3
c) Đặt C(x)=0
\(\Leftrightarrow\left(4x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{4};\frac{3}{2}\right\}\) là nghiệm của đa thức C(x)=(4x-1)(2x-3)
d) Đặt D(x)=0
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\)
hay \(x=\pm1\)
Vậy: \(x=\pm1\) là nghiệm của đa thức \(D\left(x\right)=x^2-1\)
e) Đặt E(x)=0
\(\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4\right\}\) là nghiệm của đa thức \(E\left(x\right)=x^2-4x\)
f) Đặt F(x)=0
\(\Leftrightarrow4x-8x^2=0\)
\(\Leftrightarrow4x\left(1-2x\right)=0\)
mà \(4\ne0\)
nên \(\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\) là nghiệm của đa thức \(F\left(x\right)=4x-8x^2\)
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
a, \(x^2+4x-5=x^2+2x+2x+4-9\)
\(=\left(x^2+2x\right)+\left(2x+4\right)-9\)
\(=x.\left(x+2\right)+2.\left(x+2\right)-9\)
\(=\left(x+2\right)^2-9\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-9\ge-9\) với mọi giá trị của \(x\in R\).
Để \(\left(x+2\right)^2-9=-9\) thì \(\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy.......
b, \(4x^2+4x-3=4x^2+2x+2x+1-4\)
\(=2x.\left(2x+1\right)+\left(2x+1\right)-4\)
\(=\left(2x+1\right)^2-4\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-4\ge-4\) với mọi giá trị của \(x\in R\).
Để \(\left(2x+1\right)^2-4=-4\) thì \(\left(2x+1\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy.........
c, \(x^2+x+1=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=x.\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}.\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).
Để \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\) thì \(\left(x+\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy.........
Chúc bạn học tốt!!!
Các câu còn lại làm tương tự!!
a) A = x2 + 4x - 5
A = x2 + 4x + 4 +1 = ( x + 2 )2 + 1 \(\ge\) 1 với mọi x
MinA = 1 khi và chỉ khi x = -2
b) B = 4x2 + 4x - 3
B = 4x2 + 4x + 1 - 4
B = ( 2x+1 )2 - 4 \(\ge\) -4 với mọi x
MinB = -4 khi và chỉ khi x = \(\dfrac{-1}{2}\)
c) C = x2 + x + 1
C = x2 + x + \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
C = ( x + \(\dfrac{1}{2}\) )2 + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{3}{4}\) với mọi x
MinC = \(\dfrac{3}{4}\) khi và chỉ khi x = \(-\dfrac{1}{2}\)
d) D = 2x2 + 4x + 8
D = 2 . ( x2 + 2x + 4 )
D = 2. ( x2 + 2x + 1 + 3 )
D = 2. \(\left[\left(x+1\right)^2+3\right]\)
D = 2.( x+1 )2 + 6 \(\ge\) 6 với mọi x
MinD = 6 khi và chỉ khi x = -1
e) E = x2 + x
E = x2 + x + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\)
E = \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\) \(\ge\) \(-\dfrac{1}{4}\) với mọi x
MinE = \(-\dfrac{1}{4}\) khi và chỉ khi x = \(\dfrac{-1}{2}\)
Yêu cầu đề bài của bạn
Để đơn giản hóa biểu thức, chúng ta cần áp dụng thuộc tính phân phối và đơn giản hóa mọi giá trị tuyệt đối.
Đầu tiên, hãy phân phối 3 cho các điều khoản bên trong dấu ngoặc đơn:
3(4x-1) = 12x - 3
Tiếp theo, hãy đơn giản hóa biểu thức giá trị tuyệt đối |x-2|:
|x-2| có thể dương hoặc âm tùy thuộc vào giá trị của x. Nếu x lớn hơn 2 thì |x-2| = x-2. Nếu x nhỏ hơn 2 thì |x-2| = -(x-2) = -x + 2.
Do đó, chúng ta có hai trường hợp cần xem xét:
Trường hợp 1: x > 2
Trong trường hợp này, |x-2| = x-2. Vì vậy, biểu thức trở thành:
12x - 3 - (x-2)
Đơn giản hóa hơn nữa:
12x - 3 - x + 2 = 11x - 1
Trường hợp 2: x < 2
Trong trường hợp này, |x-2| = -x + 2. Vậy biểu thức trở thành:
12x - 3 - (-x + 2)
Đơn giản hóa hơn nữa:
12x - 3 + x - 2 = 13x - 5
Do đó, biểu thức đơn giản hóa là:
Nếu x > 2: 11x - 1
Nếu x < 2: 13x - 5
...