Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25S = 1 - 1/52+1/54- 1/56+.......+1/52008- 1/52010
Cộng 2 vế với S ta có :
26S = 1 - 1/52012 < 1 suy ra S< 1/26
\(5^2.S=1-\frac{1}{5^2}+\frac{1}{5^4}-.....+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)
\(25S=1-\frac{1}{5^2}+\frac{1}{5^4}-...+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)Cộng 2 vế với S ta có
\(26S=1-\frac{1}{5^{2012}}\)\(\Rightarrow26S< 1\Rightarrow S< \frac{1}{26}\)
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
c: \(1^3+7^3+3^3+5^3\)
\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)
\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
a, Để 3/(n-1) nguyên
<=> 3 chia hết cho n-1
Mà n-1 nguyên
=> n-1 thuộc Ư(3)={-3,-1,1,3}
=> n=-2,0,2,4
a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9
Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3
=> 9.10n + 18 \(⋮\) 9.3
=> 9.10n + 18 \(⋮\) 27.
b) 92n + 14 = 81n + 14.
Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.
=> 81n + 14 \(⋮\) 5
=> 92n + 14 \(⋮\) 5
a) Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=k\)
\(\Rightarrow k=\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{k}{9}\)
Tương tự :\(\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}=\frac{k}{9}\)
Vậy ..........