Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
2:
a: x/6-1/3=-3/2
=>x/6=-3/2+1/3=-9/6+2/6=-7/6
=>x=-7
b: =>|x+5|=7
=>x+5=7 hoặc x+5=-7
=>x=2 hoặc x=-12
1:
a: \(=1-\dfrac{5}{4}-\dfrac{3}{4}-2=-1-2=-3\)
b: \(=34\cdot\left(-420\right)-34\cdot580=34\cdot\left(-1000\right)=-34000\)
a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm
- Với \(x\le\frac{1}{4}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)
2.
- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\)
\(\Leftrightarrow-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
3.
- Với \(x\ge\frac{5}{3}\)
\(\Leftrightarrow3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)
- Với \(x< \frac{5}{3}\)
\(\Leftrightarrow5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
4. Do hai vế của pt đều không âm, bình phương 2 vế:
\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)
\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
a) \(\forall n\in N,\left(n^2+n\right)\) là số chẳn .
mệnh đề phủ định này đúng vì ta có : \(n^2+n=n\left(n+1\right)⋮2\)
b) \(\exists n\in N,\left(2^n+1\right)\) là số chính phương
mệnh đề phủ định này đúng vì \(n=3\) thì \(2^n+1=9\) là số chính phương
c) \(\exists n\in N,\left(n^2+1\right)\) là bội của \(3\)
mệnh đề phủ định này sai vì :
ta có : \(n\) có 3 dạng \(3a;3a+1;3a+2\)
\(\Rightarrow n^2+1\) có 3 dạng là : \(9n^2+6n+2⋮̸3\) ; \(9n^2+12n+5⋮̸3\) ; \(9n^2+1⋮̸3\)
d) \(\exists n\in N^{\circledast},4n^2-2n=n^2-n\)
mệnh đề phủ định này sai vì phương trình \(3n^2-n=0\) không có nghiệm nào thuộc \(N^{\circledast}\)
\(n^2+4n+2013\) là số chính phương
Đặt \(n^2+4n+2013=t^2\left(t\in Z^+\right)\)
\(\Leftrightarrow t^2-\left(n^2+4n+4\right)=2009\)
\(\Leftrightarrow t^2-\left(n+2\right)^2=2009\)
\(\Leftrightarrow\left(t-n-2\right)\left(t+n+2\right)=2009\)
Thấy: \(t+n+2>t-n-2\forall t,n\in Z^+\)
\(\Rightarrow\left\{{}\begin{matrix}t+n+2=2009\\t-n-2=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}t=1005\\n=1002\end{matrix}\right.\) (thỏa)
Vậy \(n=1002\) thì \(n^2+4n+2013\) là SCP
Đặt n2+4n+2013=m2n2+4n+2013=m2
⇔2009=(m−n−2)(m+n+2)⇔2009=(m−n−2)(m+n+2)
Vì m,nm,n là số tự nhiên nên chia TH ra để tìm n
ta thay : \(\frac{32}{2}=2^4;\frac{-72}{-9}=2^3;\frac{80}{20}=2^2;\frac{-66}{-33}=2\)chia 2 ve cho x4\(\ne0\)
dat \(x+\frac{2}{x}=y\) (1)voi |y|\(\ge2\sqrt{2}\)( dung cosi cho 1) ta co:
2(y4-8y2+8)-9(y3-6y)+20(y2-4)-33y+46=0
<=> 2y4-9y3+4y2+21y-18=0(*)
<=> \(\left[\begin{matrix}y=1\\y=2\\y=3\\y=-\frac{3}{2}\end{matrix}\right.\)
chi co y=3 la tm => \(x+\frac{2}{x}=3\Rightarrow x=\left[\begin{matrix}1\\2\end{matrix}\right.\)
chú ý : đến cho * bạn nhằm nghiệm sau đó dùng lược đồ hoocner