Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Chứng tỏ không phải số nguyên nhỉ?
\(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
\(\Rightarrow A.\frac{3}{4}=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+...-\left(\frac{3}{4}\right)^{2010}+\left(\frac{3}{4}\right)^{2011}\)
\(\Rightarrow\frac{3}{4}A+A=\left(\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+...-\left(\frac{3}{4}\right)^{2010}+\left(\frac{3}{4}\right)^{2011}\right)+\left(1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\right)\)
\(\Rightarrow\frac{7}{4}A=\left(\frac{3}{4}\right)^{2011}+1\)
\(\Rightarrow A=\frac{4.\left(\frac{3}{4}\right)^{2011}+4}{7}\)
Vậy A không phải số nguyên
A = 1 - (3/4) + (3/4)² - (3/4)³ + ... - (3/4)^2009 + (3/4)^2010
A.(3/4) = (3/4) - (3/4)² + (3/4)³ - (3/4)^4 +... - (3/4)^2010 + (3/4)^2011
cộng 2 đẳng thức trên lại vế theo vế:
A + A.(3/4) = 1 + (3/4)^2011 => 7A/4 = 1 + (3/4)^2011
=> 7A = 4 + 4.(3/4)^2011 không là số nguyên => A không nguyên
vậy A ko phải là số nguyên
xét B=-3/4+(3/4)^2-.......-(3/4)^n với n lẻ,n>=1
=>-3/4.B=(3/4)^2-(3/4)^3+.........+(3/4)...
trừ theo vế suy ra 7/4.B=-3/4-(3/4)^(n+1)
=>7B=-3-(3/4)^n
=>A=1+B=1-(3+(3/4)^n)/7
do <0(3/4)^n <1
suy ra 0< 3+(3/4)^n <7
suy ra (3+(3/4)^n)/7 ko là số nguyên
suy ra A ko nguyên
****
Câu hỏi của trần quốc tuấn - Toán lớp 7 - Học toán với OnlineMath
a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)
=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)
=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)
=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)
b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên
-{-[-(3/4)]}=3/4