K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

= 3.(3/3 - 3/4 + 3/4 - 3/5 + 3/5 - 3/6 +.....+ 3/277 - 3/278 + 3/278 - 3/279)

= 3.(3/3 - 3/279 )

= 3.92/93

= 187/93

Mình cũg không chắc chắn là 100% đâu bạn nên dò lại nhé bucminh

22 tháng 7 2017

Đặt biểu thức là \(A\)

\(A=\dfrac{3}{3.4}+\dfrac{3}{4.5}+\dfrac{3}{5.6}+...+\dfrac{3}{278.279}\)

\(\Leftrightarrow\dfrac{1}{3}A=\dfrac{1}{3}\left(\dfrac{3}{3.4}+\dfrac{3}{4.5}+\dfrac{3}{5.6}+...+\dfrac{3}{278.279}\right)\)

\(\Leftrightarrow\dfrac{1}{3}A=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{278.279}\)

\(\Leftrightarrow\dfrac{1}{3}A=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{278}-\dfrac{1}{279}\)

\(\Leftrightarrow\dfrac{1}{3}A=\dfrac{1}{3}-\dfrac{1}{279}\)

\(\Leftrightarrow\dfrac{1}{3}A=\dfrac{93}{279}-\dfrac{1}{279}\)

\(\Leftrightarrow\dfrac{1}{3}A=\dfrac{92}{279}\)

\(\Leftrightarrow A=\dfrac{92}{279}:\dfrac{1}{3}\)

\(\Leftrightarrow A=\dfrac{92}{279}.3\)

\(\Leftrightarrow A=\dfrac{92}{93}\)

23 tháng 4 2017

Bài này là cơ bản luôn đó:
= 3.(1/1.2 + 1/2.3+...)
= 3.(1/1-1/2+1/2-1/3...)
(tự viết nốt và tính)

31 tháng 3 2017

\(\frac{3}{2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{17.18}\)

\(=\frac{3.1}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{17.18}\)

\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{17.18}\right)\)

\(=3.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{17}-\frac{1}{18}\right)\)

\(=3.\left(1-\frac{1}{18}\right)\)

\(=3.\frac{17}{18}\)

\(=\frac{17}{6}\)

31 tháng 3 2017

cùng hình nè

6 tháng 2 2017

Lời giải 1 :

Nhận xét : Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Nhân 2 vế của A với 3 lần khoảng cách này ta được :

3A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)

    = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8)

    = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - … + 8.9.10 - 8.9.10 + 9.10.11

    = 9.10.11 = 990.

A = 990/3 = 330

Ta chú ý tới  đáp số  990 = 9.10.11, trong đó 9.10 là số hạng cuối cùng của A và 11 là số tự nhiên kề sau của 10, tạo thành tích ba số tự nhiên liên tiếp. Ta cã kết quả tæng qu¸t sau :

  A = 1.2 + 2.3 +  … + (n - 1).n = (n - 1).n.(n + 1)/3

Lời giải khác :

Lời giải 2 :

3.A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)

= 3.(0.1 + 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)

= [1.(0 + 2) + 3.(2 + 4) + 5.(4 + 6) + 7.(6 + 8) + 9.(8 + 10)].3

 = 3.(1.1.2 + 3.3.2 + 5.5.2 + 7.7.2 +9.9.2) = (12 + 32 + 52 + 72 + 92).2.3

= (12 + 32 + 52 + 72 + 92).6 = 990 = 9.10.11

Ta chưa biết cách tính tổng bình phương các số lẻ liên tiếp bắt đầu từ 1, nhưng liên hệ với lời giải 1, ta có :

(12 + 32 + 52 + 72 + 92).6 = 9.10.11, hay

(12 + 32 + 52 + 72 + 92) = 9.10.11/6 

6 tháng 2 2017

THAM KHẢO NHA CÁC BẠN

21 tháng 3 2016

(1/3-1/4+1/4-1/5+1/5-.......+1/x.(x+1)=3/10

1/3-1/x+1=3/10

tự làm...

27 tháng 12 2022

\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + .....+\(\dfrac{1}{n.(n+1)}\) = \(\dfrac{3}{10}\)

\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\) +......+ \(\dfrac{1}{n}-\dfrac{1}{n+1}\) = \(\dfrac{3}{10}\)

\(\dfrac{1}{3}-\dfrac{1}{n+1}\) = \(\dfrac{3}{10}\)

         \(\dfrac{1}{n+1}\) = \(\dfrac{1}{3}-\dfrac{3}{10}\)

          \(\dfrac{1}{n+1}\) = \(\dfrac{1}{30}\)

           n + 1 = 30

           n = 30 - 1

           n = 29

Kết luận n = 29 là giá  trị thỏa mãn yêu cầu đề bài.

27 tháng 12 2022

\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{3}{10}\)

\(\dfrac{1}{3}-\dfrac{1}{n+1}=\dfrac{3}{10}\)

\(\dfrac{-1}{\left(n+1\right)}=\dfrac{-1}{30}\)

\(-n-1=-30\)

-n = -29

n = 29

24 tháng 4 2016

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

24 tháng 4 2016

bài này có x mà ko có vế phải à

13 tháng 3 2022

GIÚP EM VỚI Ạ! EM ĐANG CẦN GẤP Ạ

 

13 tháng 3 2022

-187/ 20