Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
c) 9 < 3x : 3 < 81
=> 32 < 3x - 1 < 34
=> x - 1 = {2; 3; 4}
=> x = {3; 4; 5}
d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218
=> 5x + x + 1 + x + 2 < 218 : 218 . 518
=> 53x + 3 < 1.518
=> 53.(x + 1) < 518
=> 3.(x + 1) < 18
=> x + 1 < 18 : 3
=> x + 1 < 6
=> x < 6 - 1
=> x < 5
c. \(9\le3^x:3\le81\)
\(\Rightarrow3^2\le3^{x-1}\le3^4\)
\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)
\(\Rightarrow x-1\in\left\{2;3;4\right\}\)
\(\Rightarrow x\in\left\{3;4;5\right\}\)
d. Thêm đk : x thuộc N
\(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)
\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)
\(\Rightarrow x+x+x+1+2\le18\)
\(\Rightarrow3x+3\le18\)
\(\Rightarrow3\left(x+1\right)\le18\)
\(\Rightarrow x+1\le6\)
\(\Rightarrow x\le5\)
\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
\(12^8:2^8< =6^x< =\left(6^3\right)^3\)
<=> \(1679616< =6^x< =6^9\)
<=> \(6^8< =6^x< =6^9\)
<=> \(8< =x< =9\)
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)
Bài 1:
a) Ta có \(\left|x\right|\ge0\) (với mọi \(x\))
Mà \(\left|x\right|\le3\)
\(\Rightarrow0\le\left|x\right|\le3\)
\(\Rightarrow\left|x\right|\in\left\{0;1;2;3\right\}\)
\(\Rightarrow x\in\left\{0;1;2;3;-1;-2;-3\right\}\)
b) Ta có: \(\left|x-1\right|\ge0\) (với mọi \(x\))
Mà \(\left|x-1\right|\le4\)
\(\Rightarrow0\le\left|x-1\right|\le4\)
\(\Rightarrow\left|x-1\right|\in\left\{0;1;2;3;4\right\}\)
\(\Rightarrow x-1\in\left\{0;1;-1;2;-2;3;-3;4;-4\right\}\)
\(\Rightarrow x\in\left\{1;2;0;3;-1;4;-2;5;-3\right\}\)
Bài 2:
\(A=4+2^2+2^3+2^4+...+2^{20}\)
\(\Rightarrow A=2+2+2^2+2^3+2^4+...+2^{20}\)
Đặt \(B=2+2^2+2^3+...+2^{20}\)
\(\Rightarrow2B=2^2+2^3+2^4+...+2^{21}\)
\(\Rightarrow2B-B=\left(2^2+2^3+2^4+...+2^{21}\right)-\left(2+2^2+2^3+...+2^{20}\right)\)
\(\Rightarrow B=2^{21}-2\)
\(\Rightarrow A=2+2^{21}-2\)
\(\Rightarrow A=2^{21}\)
a) 9 = 32 < 3n < 81 = 34
<=> 2 < n < 4
Vì n thuộc N nên n = 3
b) 125 = 53 < 5n < 625 = 54
<=. 3 < n < 4
vì n thuộc n nên n thuộc {3;4}
a, \(\Rightarrow3^2< 3^n< 3^4\Rightarrow2< n< 4\Rightarrow n=3\)
b, \(\Rightarrow5^3\le5^n\le5^4\Rightarrow3\le n\le4\Rightarrow n\in\left\{3;4\right\}\)
\(8< 2^n\le2^{2017}:2^{2013}\)
\(\Rightarrow8< 2^n\le2^4\)
\(\Rightarrow n=0;1;2;3;4\)
P/s: Chọn số nào thì chọn nhá
a: Ta có: \(x\in B\left(15\right)\)
nên \(x\in\left\{0;15;30;45;60;75;...\right\}\)
mà 40<=x<=70
nên \(x\in\left\{45;60\right\}\)
b: \(2011^2\cdot2011^x=2011^7\)
\(\Leftrightarrow x+2=7\)
hay x=5
3 . 33 \(\le\)3n \(\le\)22018 : 22003
=> 34 \(\le\)3n \(\le\)215
=> n = 4 ; 5 ; 6 ; 7 ; 8 ; 9
P/s: Như bài trước
n = 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15
Tk cho mk nha ae!!!!!!!!! Tk đúng đấy nhé...