Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(7.4^x=7.4^3\Leftrightarrow4^x=4^3;x=3\)
2) \(\frac{3}{2.5^x}=\frac{3}{2.5^{12}}\Leftrightarrow5^x=5^{12};x=12\)
\(2^x=2.2^8=2^9;x=9\)
4) \(5.3^x=7.3^5-2.3^5\Leftrightarrow5.3^x=3^5.\left(7-2\right)\)
\(\Leftrightarrow3^5.x=3^5.5;x=5\)
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
a)
\(\left(\frac{1}{3}\right)^n\cdot27^n=3^n\)
\(\Rightarrow\left(\frac{1}{3}\cdot27\right)^n=3^n\)
\(\Rightarrow9^n=3^n\)
\(\Rightarrow\left(3^2\right)^n=3^n\)
\(\Rightarrow3^{2n}=3^n\)
\(\Rightarrow2n=n\)
\(\Leftrightarrow n=0\)
Vậy \(n=0\)
d) Ta có:
\(6^{3-n}=216\)
\(\Rightarrow6^{3-n}=6^3\)
\(\Rightarrow3-n=3\)
\(\Rightarrow n=3-3\)
\(\Rightarrow n=0\)
Vậy \(n=0\)\(\text{ }\)
1: \(5\cdot3^x=5\cdot3^4\)
nên \(3^x=3^4\)
hay x=4
2: \(7\cdot4^x=7\cdot4^3\)
nên \(4^x=4^3\)
hay x=3
3: \(8\cdot7^x=8\cdot7^6\)
nên \(7^x=7^6\)
hay x=6
a)
\(3^{n+1}+5.3^{n-2}=2592\)
\(\Rightarrow3^{n+1}+5.3^{n+1-3}=2592\)
\(\Rightarrow3^{n+1}+\dfrac{1}{27}.5.3^{n+1}=2592\)
\(\Rightarrow3^{n+1}+\dfrac{5}{27}.3^{n+1}=2592\)
\(\Rightarrow3^{n+1}.\left(\dfrac{5}{27}+1\right)=2592\)
\(\Rightarrow3^{n+1}.\dfrac{32}{27}=2592\)
\(\Rightarrow3^{n+1}=2187\)
\(\Rightarrow3^{n+1}=3^7\)
\(\Rightarrow n+1=7\)
\(\Rightarrow n=6\)
b)
\(3^{n+2}.5.3^{n-1}=864\)
\(\Rightarrow3^{n+2}+\dfrac{1}{27}.5.3^{n+2}=864\)
\(\Rightarrow3^{n+2}\left(\dfrac{5}{27}+1\right)=864\)
\(\Rightarrow3^{n+2}.\dfrac{32}{27}=864\)
\(\Rightarrow3^{n+2}=729\)
\(\Rightarrow3^{n+2}=3^6\)
\(\Rightarrow n+2=6\)
\(\Rightarrow n=4\)
(3x-2)2 = 2.23
<=> (3x-2)2 = 24
<=> (3x-2)2 = (22)2
<=> 3x-2 = 22 hoặc 3x-2 = -22
<=> 3x-2 = 4 hoặc 3x-2 = -4
<=> 3x = 6 hoặc 3x = -2
<=> x = 2 hoặc x = -2/3