Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{32}+\sqrt{50}-2\sqrt{8}+\dfrac{1}{3}\sqrt{18}\)
\(=\sqrt{4^2\cdot2}+\sqrt{5^2\cdot2}-2\cdot2\sqrt{2}+\dfrac{1}{3}\cdot\sqrt{3^2\cdot2}\)
\(=4\sqrt{2}+5\sqrt{2}-4\sqrt{2}+\dfrac{1}{3}\cdot3\sqrt{2}\)
\(=\left(4\sqrt{2}-4\sqrt{2}\right)+5\sqrt{2}+\sqrt{2}\)
\(=5\sqrt{2}+\sqrt{2}\)
\(=6\sqrt{2}\)
= (2√2 - 3√2 + 10)√2 - √5
= 2.(√2)2 - 3.(√2)2 + √10.√2 - √5
= 4 - 6 + √20 - √5 = -2 + 2√5 - √5
= -2 + √5
= 0,2.10.√3 + 2|√3 - √5|
s
= 2√3 + 2(√5 - √3)
= 2√3 + 2√5 - 2√3 = 2√5
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)
\(=5\sqrt{2}-\dfrac{3}{2}\cdot4\sqrt{2}-\dfrac{1}{3}\cdot6\sqrt{2}+8=-3\sqrt{2}+8\)
Cần gấp thì bạn cũng nên viết đầy đủ đề bài nhé.
** Bài toán rút gọn**
Lời giải:
\(\sqrt{17-12\sqrt{2}}=\sqrt{17-2\sqrt{72}}=\sqrt{9-2\sqrt{8.9}+8}=\sqrt{(\sqrt{9}-\sqrt{8})^2}\)
\(=\sqrt{9}-\sqrt{8}=3-2\sqrt{2}\)
\(\sqrt{24-8\sqrt{8}}=\sqrt{24-2\sqrt{128}}=\sqrt{16-2\sqrt{16.8}+8}=\sqrt{(\sqrt{16}-\sqrt{8})^2}\)
\(=\sqrt{16}-\sqrt{8}=4-2\sqrt{2}\)
\(\Rightarrow \sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=(3-2\sqrt{2})-(4-2\sqrt{2})=-1\)
--------------------
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)
\(=\sqrt{8-2\sqrt{8.9}+9}+\sqrt{8+2\sqrt{8.9}+9}\)
\(=\sqrt{(\sqrt{8}-\sqrt{9})^2}+\sqrt{(\sqrt{8}+\sqrt{9})^2}\)
\(=|\sqrt{8}-\sqrt{9}|+|\sqrt{8}+\sqrt{9}|=3-2\sqrt{2}+3+2\sqrt{2}=6\)
----------------------
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2\sqrt{9.2}+2}-\sqrt{9-2\sqrt{9.2}+2}\)
\(=\sqrt{(\sqrt{9}+\sqrt{2})^2}-\sqrt{(\sqrt{9}-\sqrt{2})^2}\)
\(=|\sqrt{9}+\sqrt{2}|-|\sqrt{9}-\sqrt{2}|=3+\sqrt{2}-(3-\sqrt{2})=2\sqrt{2}\)
\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|-\left|4-2\sqrt{2}\right|=3-2\sqrt{2}-4+2\sqrt{2}\)
\(=-1\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|+\left|3+2\sqrt{2}\right|=3-2\sqrt{2}+3+2\sqrt{2}\)
\(=6\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
lấy số cuối trừ số đầu chia khoảng cách cộng 1
Ta Tách từng số ra VD:1 và 2 khoảng cách là 1.Cứ như thế rồi suy ra
a: \(\dfrac{\sqrt{50}-\sqrt{32}+\sqrt{8}}{\sqrt{2}}\)
\(=\dfrac{5\sqrt{2}-4\sqrt{2}+2\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{\sqrt{2}}=3\)
b: \(\dfrac{4}{\sqrt{5}-1}-5\sqrt{\dfrac{1}{5}}\)
\(=\dfrac{4\left(\sqrt{5}+1\right)}{5-1}-\sqrt{5}\)
\(=\sqrt{5}+1-\sqrt{5}\)
=1
\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^{64}-1\right)+11=3^{64}+10\)
A = 8.(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (38 - 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (316 - 1)(316 + 1)(332 + 1) + 1
A = (332 - 1)(332 + 1) + 1
A = 364 - 1 + 1
A = 364
đề nghị bạn tô ku đa,lol ko ns bậy trên trang học tập
Trả lời:
\(\sqrt{32}-\sqrt{8}+\sqrt{\frac{1}{2}}\)
\(=\sqrt{4^2.2}-\sqrt{2^2.2}+\sqrt{\frac{2}{2^2}}\)
\(=4\sqrt{2}-2\sqrt{2}+\frac{\sqrt{2}}{2}\)
\(=\left(4-2+\frac{1}{2}\right)\sqrt{2}\)
\(=\frac{5\sqrt{2}}{2}\)