K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

\(3^2-6x+5< 0\)

\(\text{⇔}-6x+14< 0\)

\(\text{⇔}-6x< 0-14\)

\(\text{⇔}-6x< -14\)

\(\text{⇔}x>\dfrac{7}{3}\)

Vậy: Bất phương trình có nghiệm \(S=\left\{x\text{ | }x>\dfrac{7}{3}\right\}\)

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

8 tháng 8 2017

a, \(A=2x^2+4x+5=2x^2+4x+2+3\)

\(=2\left(x+1\right)^2+3>0\)

\(\Rightarrowđpcm\)

b, \(B=-3x^2+6x-7=-3x^2+6x-3-4\)

\(=-3\left(x-1\right)^2-4< 0\)

\(\Rightarrowđpcm\)

8 tháng 8 2017

\(A=2x^2+4x+5\)

\(\Rightarrow A=2x^2+4x+2+3\)

\(\Rightarrow A=2\left(x+1\right)^2+3\)

\(\Rightarrow A>0\left(ĐPCM\right)\)

13 tháng 7 2017

a, \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1>0\)

=> đpcm

b, Đề sai

c, \(x^2+x+5=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)

=> đpcm

20 tháng 10 2015

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

 \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)mà \(1>0\) nên \(\left(x-2\right)+1>0\)

Vậy \(x^2-4x+5>0\)

 

\(6x-x^2-10=-x^2+6x-9-1=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)

Vì   \(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2-1\le-1\)mà \(-1<0\)  Nên  \(-\left(x-3\right)^2-1<0\)

Vậy  \(6x-x^2-10<0\)

17 tháng 7 2019

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)

(đpcm)

17 tháng 7 2019

nhầm câu b tí: \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

(đpcm) (sửa dấu + thành - thôi:v)

13 tháng 2 2020
https://i.imgur.com/oYkvP8J.jpg