Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/2 + 3/8 + 3/32 + 3/128 + 3/512
= 768/512 + 182/512 + 48/512 + 12/512 + 3/512
= 960/512 + 60/512 + 3/512
= 1023/512
Đặt tổng trên = A
\(A=\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
\(A.4=6+\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}\)
\(A.4-A=\left(6+\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}\right)-\left(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\right)\)
\(A.3=6-\frac{3}{512}=\frac{3069}{512}\)
\(A=\frac{3069}{512}:3=\frac{1023}{512}\)
Đặt A = 3/2 + 3/8 + ... + 3/512
bn tách
3/2 = 3/2^1
3/8 = 3/2^3
...
3/512 = 3/2^9
Rồi nhân nó lên trừ được bao nhiêu - đi A ban đầu là đc
k nka
\(...=\dfrac{3}{2}x\left(1+\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{64}+\dfrac{1}{256}\right)\)
\(=\dfrac{3}{2}x\left(\dfrac{256}{256}+\dfrac{64}{256}+\dfrac{16}{256}+\dfrac{4}{256}+\dfrac{1}{256}\right)\)
\(=\dfrac{3}{2}x\dfrac{341}{256}=\dfrac{1023}{512}\)
\(\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}+\frac{3}{256}+\frac{3}{512}+\frac{3}{1024}\)
=\(3.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{1024}\right)=3.\left(\frac{1024}{1024}-\frac{1}{1024}\right)=3.\frac{1023}{1024}=\frac{3069}{1024}\)
Chúc em học tốt
=1023/512