Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
\(B=\dfrac{2}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(B=\dfrac{2}{3}\left(\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{100-97}{97.100}\right)\)
\(B=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(B=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)\)
\(B=\dfrac{2}{3}.\dfrac{99}{100}\)
\(B=\dfrac{33}{50}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+................+\frac{5}{100.103}\)
\(\frac{1}{3}.\left(5-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+..............+\frac{5}{100}-\frac{5}{103}\right)\)
\(\frac{1}{3}.\left(5-\frac{5}{103}\right)\)
\(\frac{1}{3}.\left(\frac{510}{103}\right)=\frac{170}{103}\)
\(=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{....}{....}\)
\(A=4.4^1.4^3.4^5.....4^{57}=4^{1+3+5+...+57}=4^{\left[\left(\dfrac{57-1}{2}\right)+1\right]:2\left(57+1\right)}=4^{841}\)\(B=3+3^2+3^3+3^4+...+3^{100}\)
\(3B=3\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(3B=3^2+3^3+3^4+3^5+...+3^{101}\)
\(3B-B=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4....+...+3^{100}\right)\)
\(2B=3^{101}-3\Leftrightarrow B=\dfrac{3^{101}-3}{2}\)
2)
Từ \(1\rightarrow9\) có: \(\left(9-1\right):1+1=9\)(chữ số)
Từ \(10\rightarrow99\) có:\(2\left[\left(99-10\right):1+1\right]=180\)(chữ số)
Từ \(100\rightarrow386\) có:\(3\left[\left(386-100\right):1+1\right]=816\)(chữ số)
Như vậy,Để đánh số trang từ \(1\rightarrow386\) thì cần:
\(9+180+816=1005\)(chữ số)
Biến đổi mẫu ta có
30 +32 +34 +36 +38 +310 +312+314
= 30 +32 +(30.34 +32.34) + (30.38+32.38) + (30.312+32.312) (Vì 30=1)
= (30+32)(1+34+38+312)
Biểu thức đổi thành \(\dfrac{1+3^4+3^8+3^{12}}{\left(1+9\right)\left(1+3^4+3^8+3^{12}\right)}\)= \(\dfrac{1}{10}\)
theo công thức (n-1)n(n+1)=n\(^3\)-n
\(\Rightarrow\) n\(^3\)=n+(n-1)n(n-1)
Ta có :
\(A=1^3+2^3+.....+100^3\)
\(\Rightarrow1+2+1\cdot2\cdot3+3+2\cdot3\cdot4+100+99\cdot100\cdot101\)\(=\left(1+2+3+...+100\right)+\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)\) =5050+101989800
=101994850
\(A=3+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{29}+3^{30}\right)\)
\(A=1\left(3+3^2\right)+3^2\left(3+3^2\right)+....+3^{28}\left(3+3^2\right)\)
\(A=\left(1+3^2+...+3^{28}\right)\left(3+3^2\right)\)
\(A=13\left(1+3^2+...+3^{28}\right)⋮13\left(đpcm\right)\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
Chúc bạn học tốt!