Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)
=\(1-\frac{1}{56}=\frac{55}{56}\)
b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)
= \(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)
=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)
=> \(A=\frac{99}{100}.3=\frac{297}{100}\)
c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)
=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)
e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)
=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)
=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)
=\(1-\frac{1}{105}=\frac{104}{105}\)
=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)
a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)
\(P=1-\dfrac{1}{56}\)
\(P=\dfrac{55}{56}\)
b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)
\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=3\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}\)
\(A=\dfrac{297}{100}\)
c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(B=1-\dfrac{1}{103}\)
\(B=\dfrac{102}{103}\)
d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)
\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}.\dfrac{102}{103}\)
\(C=\dfrac{170}{103}\)
e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)
\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}.\dfrac{104}{105}\)
\(D=\dfrac{26}{15}\)
5/1.4 + 5/4.7 + 5/7.10 + ... + 5/97.100
= 5/3 . (3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100)
= 5/3 . (1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100)
= 5/3 . ( 1 - 1/100)
= 5/3 . 99/100
= 33/20
= 1-1/4+1/4-1/7+1/7-1/10 +...+ 1/x -1/ x+3
= 1 -1/x+3
= x+2 / x+3
Câu này dễ mà.
Gọi biểu thức sau là A, ta có:
A=(5/1.4)+(5/4.7)+(5/7.10)+...+(5/91.94)
2A=(10/1.4)+(10/4.7)+(10/7.10)+...+(10/91.94)
2A=5/1-5/4+5/4-5/7+5/7-5/10+...+5/91-5/94
2A=5/1-5/4+5/4-5/7+5/7-5/10+...+5/91-5/94
2A=5/1-5/94
2A=465/94
=>A=465/94:2
=>A= tự tính nhé
\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{91.94}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{91.94}\right)\)
\(=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\right)\)
\(=\frac{5}{3}.\left(1-\frac{1}{94}\right)=\frac{5}{3}.\frac{93}{94}=\frac{155}{94}\)
x/1.4+x/4.7+x/7.10+x/10.13+x/13.16=5/2
=>x/3(1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16)=5/2
=>x/3.(1/4-1/16)=5/2
=>x/3.3/16=5/2
=>x/3=5/2:3/16
=>x/3=40/3
=>x=40
Vậy x=40
x/1.4 + x/4.7 + x/7.10 + x/10.13 + x/13.16 = 5/6
=> x.1/3.(3/1.4 + 3/4.7 + 3/7.10 + 3/10.13 + 3/13.16) = 5/6
=> x.1/3.(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16) = 5/6
=> x.1/3.(1 - 1/16) = 5/6
=> x.1/3.15/16 = 5/6
=> x.1/3 = 5/6 : 15/16
=> x.1/3 = 8/9
=> x = 8/9 : 1/3
=> x = 8/3
= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43
=1/1-1/43
=42/43
(^_^)
Làm từng phần nha bạn
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{298\cdot301}+x=\frac{299}{301}\)
Đặt \(A+x=\frac{299}{301}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{298}-\frac{1}{301}\)
\(A=1-\frac{1}{301}\)
\(A=\frac{300}{301}\)
=> \(\frac{300}{301}+x=\frac{299}{301}\)
\(x=\frac{299-300}{301}\)
\(x=-\frac{1}{301}\)
\(A=5\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{301\cdot304}\right)\)
\(\frac{3A}{5}=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{301\cdot304}\)
\(\frac{3}{5}\cdot A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{301}-\frac{1}{304}\)
\(\frac{3}{5}\cdot A=1-\frac{1}{304}\)
\(\frac{3}{5}\cdot A=\frac{303}{304}\)
\(A=\frac{505}{304}\)