Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a;\left|1-2x\right|=3\)
\(\Leftrightarrow\left|2x-1\right|=3\Leftrightarrow2x-1=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4:2=2\\x=\left(-2\right):2=-1\end{cases}}}\)
Vậy x=2;-1
\(b;\left(x+1\right)\left(1-5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\1-5x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\5x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{5}\end{cases}}}\)
c) \(\frac{2x}{8}=\frac{16}{x}\)
\(\Leftrightarrow\frac{x}{4}=\frac{16}{x}\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm\sqrt{64}=\pm8\)
b) \(4x-1=3x-2\)
\(\Leftrightarrow4x-3x=1-2\)
\(\Leftrightarrow x=-1\)
Câu trả lời hay nhất: từ giả thiết thứ nhất dặt x= 3t , y =5t , z = -2t
thay vào giả thiết thứ 2 ta có 15t - 5t - 6t = 124 <=> t =31
nên x= 93 , y= 155 , z= -62
thân mên
long
đặng hoàng long
a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)
b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)
- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)
Vậy \(x\ge\frac{1}{2}\)
c,d tương tự b
e, tương tự a
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+ \frac{z}{xz+z+1}\)
\(=\frac{x}{xyz+xy+x}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{1}{yz+y+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{y+1}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{xyz+y}{xyz+yz+y}+\frac{z}{xz+z+1 }\)
\(=\frac{xz+1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
#Carrot
\(\left(3\frac{1}{2}-0,5\right)x\frac{1}{27}+1\frac{1}{3}\)
= \(3x\frac{1}{27}+1\frac{1}{3}\)
= \(\frac{1}{9}+\frac{4}{3}\)
= \(\frac{13}{9}\)