Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào công thức tổng quát: \(\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
Ta có: \(\left[\dfrac{5.\left(5+1\right)}{2}\right]^2=\left(\dfrac{30}{2}\right)^2=15^2\)
Vậy chọn đáp án D!
\(a)3^5.3.3^{10}:3^{15}=3^{5+1+10-15}=3\)
\(b)4^8.2^5.8^3=\left(2^2\right)^8.2^5.\left(2^3\right)^3=2^{16}.2^5.2^9=2^{16+5+9}=2^{30}\)
\(c)16^2:4^3=\left(4^2\right)^2:4^3=4^4:4^3=4\)
a,x2- 22 = 32
⇔ x2=32+22
⇔ x2=36
⇔ x= \(\pm6\)
vậy x=\(\pm6\)
b,x3+ 5 =4
⇔ x3=4-5
⇔ x3=-1
⇔ x=-1
vậy x=-1
c, x3- 4.x= 0
⇔ x(x2-4)=0
⇔ x(x-2)(x+2)=0
⇔ \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
vậy .....
Lời giải:
$\sqrt{-x^2+2x+3}\leq x^2-2x+m$
$\Leftrightarrow \sqrt{-x^2+2x+3}-x^2+2x\leq m$
Đặt $f(x)=\sqrt{-x^2+2x+3}-x^2+2x$
$f'(x)=\frac{-x+1}{\sqrt{-x^2+2x+3}}-2x+2=0\Leftrightarrow x=1$
Lập bảng biến thiên với các điểm $x=0; x=1; x=2$
$f(0)=\sqrt{3}; f(1)=\sqrt{3}; f(2)=\sqrt{3}$
Từ BBT ta thấy để BPT $f(x)\leq m$ có nghiệm thuộc đoạn $[0;2]$ thì $m\geq \sqrt{3}$
Mà $m< 10$ và $m$ nguyên dương nên $m\in\left\{4;5;6;7;8;9\right\}$
Tức là có 6 giá trị $m$ thỏa mãn.
Cô ơi, nhưng đáp án lại là 8 giá trị cô ạ, em đăng lên đây để hỏi cách làm ạ
a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)
\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)
b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)
c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)
\(\Leftrightarrow m^2-6m-23\ge0\)
\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)
\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)
\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)
mấy câu kia cũng dùng Vi-ét xử tiếp nha
103 = 1000
Đề bài lỗi .