K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

Gọi số tiền còn lại phải trả sau i tháng là Pi ; A=300 (triệu) là số tiền đã vay ; d=5,5 (triệu) là số tiền trả cố định tháng ; r=0,5% là lãi trên tháng

Ta luôn có, tại thời điểm tháng thứ i, số tiền còn lại phải trả là Pi bằng số tiền còn lại phải trả của tháng trước đó trừ đi tiền lãi ( Pi-1*r ) và trừ thêm tiền trả cố định hàng tháng (d) ; viết gọn lại là \(P_i=P_{i-1}-P_{i-1}\cdot r-d=P_{i-1}\left(1-r\right)-d\)

Áp dụng côn thức trên ta có:

Ngay tại thời điểm vay xong thì \(P_0=A\)

qua tháng thứ nhất : \(P_1=P_0-P_0r-d=A\left(1-r\right)-d\)

qua tháng thứ hai : \(P_2=P_1\left(1-r\right)-d=A\left(1-r\right)^2-d\cdot\left[\left(1-r\right)+1\right]\)

.....

qua tháng thứ k : \(P_k=P_{k-1}\left(1-r\right)-d=A\left(1-r\right)^k-d\cdot\left[\left(1-r\right)^{k-1}+\left(1-r\right)^{k-2}+...+\left(1-r\right)+1\right]\\ =A\left(1-r\right)^k-d\cdot\frac{\left(1-r\right)^k-1}{\left(1-r\right)-1}\)

Xét thời điểm trả hết nợ, tức là Pk=0

\(\Leftrightarrow A\left(1-r\right)^k-d\cdot\frac{\left(1-r\right)^k-1}{\left(1-r\right)-1}=0\\ \Leftrightarrow300\left(1-0,5\%\right)^k=5,5\cdot\frac{\left(1-0,5\%\right)^k-1}{\left(1-0,5\%\right)-1}\\ \Leftrightarrow\left(1-0,5\%\right)^k=\frac{11}{14}\Leftrightarrow k\approx48,1117\)

Bạn nhớ luôn công thức tren để giải bài tập liên quan nhé

13 tháng 11 2021

888888888888000000

26 tháng 12 2021
Còn cái nịt còn đứng cái nịt

          Theo bài ra, ta có:

     Sau đó Hà có số tiền là:  3 000 000 + 60 000 - 5 000 - 203 000 = 2 852 000 ( đồng )

     Sau đó Bin có số tiền là:  2 000 000 - 30 000 + 50 000 - 100 000 = 1 920 000 ( đồng )

          Đáp số: Hà = 2 852 000 đồng.

                       Bin = 1 920 000 đồng.

AH
Akai Haruma
Giáo viên
24 tháng 9 2017

Lời giải:

Ta thấy:

\(\bullet \) Nếu \(a\vdots p\Rightarrow b\vdots p\Rightarrow a^b+b^a;a^a+b^b\vdots p\)

Mặt khác, \(a,b\) nên \(a^b+b^a;a^a+b^b\) chẵn, do đó \(a^b+b^a;a^a+b^b\vdots 2\)

Mà \((2,p)=1\Rightarrow a^a+b^b;a^b+b^a\vdots 2p\) (đpcm)

\(\bullet \) Nếu \((a,p)=(b,p)=1\)

+) Với \(a^b+b^a\)

\(a+b\equiv 0\pmod p\Rightarrow a\equiv -b\pmod p\)

Do đó, \(a^b+b^a\equiv (-b)^b+b^a\equiv b^a-b^b\pmod p\) (do \(b\) lẻ)

\(\Leftrightarrow a^b+b^a\equiv b^b(b^{a-b}-1)\pmod p\) \((\star)\)

Vì \(a-b\vdots p-1\Rightarrow a-b=k(p-1)\) (với \(k\in\mathbb{N})\)

\(\Rightarrow b^{a-b}-1=b^{k(p-1)}-1\)

Áp dụng định lý Fermat nhỏ với \((b,p)=1\) :

\(b^{p-1}\equiv 0\pmod p\Rightarrow b^{k(p-1)}\equiv 1\pmod p\)

\(\Leftrightarrow b^{k(p-1)}-1\equiv 0\pmod p\Leftrightarrow a^b+b^a\equiv 0\pmod p\)

Mặt khác cũng dễ cm \(a^b+b^a\vdots 2\), và \((p,2)=1\Rightarrow a^b+b^a\vdots 2p\) (đpcm)

+) Với \(a^a+b^b\)

\(a^a+b^b\equiv (-b)^a+b^b\equiv b^b-b^a\equiv b^a-b^b\equiv b^b(b^{a-b}-1)\pmod p\)

Đến đây giống y như khi xét \(a^b+b^a\) ( đoạn \((\star)\) ) ta suy ra \(a^a+b^b\equiv 0\pmod p\)

Mà cũng thấy \(a^a+b^b\vdots 2\), và \((2,p)=1\Rightarrow a^a+b^b\vdots 2p\)

9 tháng 7 2019

Chọn đáp án A

15 tháng 6 2016

Hình vẽ???

15 tháng 6 2016

Ta có: Ax//Ct

=> Góc xAy + góc cBa = 180 độ (2 góc trong cùng phía)

Mà góc zCt=góc xAy

=>Góc zCt + góc cBa = 180 độ

Mà góc zCt và góc cBa là hai góc trong cùng phía.

=> Cz//Ay

Chúc bạn học tốt!hihi

25 tháng 3 2020

Giá của x sản phẩn là:

x ( 120 -x ) = - x2 +120x 

Lợi nhuận còn lại:

\(-x^2+120x-C\left(x\right)=-x^2+120x-x^2-5x-300=-2x^2+115x-300\)