Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0
<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0
<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8
<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8
<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8
<=> 4(x + y + 4)( - 4x - 2y - 2) = 8
<=> (x + y + 4)( 2x + y + 1) = -1
=>
{x + y + 4 = -1
{2x + y + 1 = 1
=> x = 2 và y = - 4
{x + y + 4 = 1
{2x + y + 1 = - 1
=> x = - 2 và y = 2
vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)
^^ ko hiểu thì bình luận
day mik cach lam dang nay voi cac ban
tim a va b sao cho
(x3 +ax2-3x+b) :(x-2) du 5 va : (x-1) du -4
Với các giá trị nguyên của \(x\ne-1\), để A nguyên thì \(\left(x^5+1\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^5+x^2-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^2\left(x^3+1\right)-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^2-1\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x-1\right)⋮\left(x^2-x+1\right)\)
\(\Rightarrow x\left(x-1\right)⋮\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x^2-x+1-1\right)⋮\left(x^2-x+1\right)\)
\(\Leftrightarrow1⋮\left(x^2-x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=1\\x^2-x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
x = 1 , 2 , 3 , 3 , 4 , .......... , 96
Đẳng thức hàm số