Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{ \left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^8=256\)
Chúc học tốt :)
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(M=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)
\(M=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(M=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(1+2^{10}\right)}\)
\(M=\frac{2^{20}}{2^{12}}\)
\(M=2^8=256\)
\(M=\frac{8^{10}+4^{10}=1.074.790.400}{8^4+4^{11}=4.198.400}\)
Vậy
\(\Rightarrow M=\frac{1.074.790.400}{4.198.400}\)
P/s; Ko chắc đâu nhé
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^8\)
tách 8 thành 2 mũ 3, 4 thành 2 mũ 2 là sẽ ra nhé
đáp án là 2 mũ 8
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(M=\frac{8^4+4^{10}.8^6}{8^4+4^{10}.4}\)
\(M=1\frac{8^6}{8^4+4^{10}.4}\)
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}\left(2^{18}+2^8\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{18}+2^8}{1+2^{10}}\)
Ta có: M= \(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
=> M= \(\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^8=256\)
Chúc bạn học tốt!
3: Tính
Ta có: \(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(=\frac{4^{10}\cdot2^{10}+4^{10}\cdot1}{4^4\cdot2^4+4^4\cdot4^7}\)
\(=\frac{4^{10}\left(2^{10}+1\right)}{4^4\left(2^4+4^7\right)}\)
\(=4^6\cdot\frac{2^{10}+1}{2^4\cdot1+2^4\cdot2^7\cdot2^3}\)
\(=4^6\cdot\frac{2^{10}+1}{2^4\left(1+2^{10}\right)}=\frac{4^6}{2^4}=\frac{2^6\cdot2^6}{2^4}=2^2\cdot2^6\)
\(=2^8=256\)
Vậy: M=256