Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\orbr{\begin{cases}\left|2x-6\right|\ge0\forall x\\\left|3y+9\right|\ge0\forall y\end{cases}}\Rightarrow-\left|2x-6\right|-\left|3y+9\right|\le0\forall x;y\)
\(\Rightarrow-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|2x-6\right|=0\\\left|3y+9\right|=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
Vậy maxC = - 18 <=> x = 3 ; y = - 3
Lớp 5 đã học rồi cơ à :)) Giỏi thế
C = -18 - | 2x - 6 | - | 3y + 9 |
Ta có : \(\hept{\begin{cases}-\left|2x-6\right|\le0\forall x\\-\left|3y+9\right|\le0\forall y\end{cases}}\Rightarrow-18-\left|2x-6\right|-\left|3y+9\right|\le-18\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-6=0\\3y+9=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
=> MaxC = -18 <=> x = 3, y = -3
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
1, \(\frac{1}{2}-\left(6\frac{5}{9}+x-\frac{117}{8}\right):\left(12\frac{1}{9}\right)=0\)
\(\left(\frac{6.9+5}{9}+x-\frac{117}{8}\right):\frac{12.9+1}{9}=\frac{1}{2}\)
( . là nhân nha)
\(\left(\frac{59}{9}-\frac{117}{8}+x\right):\frac{109}{9}=\frac{1}{2}\)
\(\frac{59}{9}-\frac{117}{8}+x=\frac{1}{2}\cdot\frac{109}{9}\)
\(\frac{59}{9}-\frac{117}{8}+x=\frac{109}{18}\)
\(x=\frac{109}{18}-\frac{59}{9}+\frac{117}{8}\)
\(x=\frac{113}{8}\)
( \(\left(y+\frac{1}{3}\right)+\left(y+\frac{2}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)
\(y+\frac{1}{3}+y+\frac{2}{9}+y+\frac{1}{27}+y+\frac{1}{81}=\frac{56}{81}\)
\(4y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)
\(4y+\frac{49}{81}=\frac{56}{81}\)
\(4y=\frac{7}{81}\)
y = 7/81:4
y = 7/324
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times\left(1-\frac{1}{6}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)
\(=\frac{1}{6}\)
\(\left(1-\frac{1}{2}\right)\)x \(\left(1-\frac{1}{3}\right)\)x \(\left(1-\frac{1}{4}\right)\)x \(\left(1-\frac{1}{5}\right)\)x \(\left(1-\frac{1}{6}\right)\)
= \(\frac{1}{2}\)x \(\frac{2}{3}\)x \(\frac{3}{4}\)x \(\frac{4}{5}\)x \(\frac{5}{6}\)
= \(\frac{1x2x3x4x5}{2x3x4x5x6}\)
= \(\frac{1}{6}\)
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
Ta có:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)
Đởn giản hết sẽ còn là:
\(\Rightarrow B=\frac{1}{2018}\)
Gợi ý: Các biểu thức mũ chẵn đều không âm.
\(a^{2n}+b^{2n}\le0\Leftrightarrow a^{2n}+b^{2n}=0\Leftrightarrow a=b=0\)
a,\(\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\)< \(0\)
Vì \(\left(x-\frac{2}{5}\right)^{2010}\);\(\left(y+\frac{3}{7}\right)^{468}\)đều > \(0\)
=> \(\left(x-\frac{2}{5}\right)^{2010}=0\)
\(\left(y+\frac{3}{7}\right)^{468}=0\)
=> \(\left(x-\frac{2}{5}\right)^{2010}=0^{2010}\)
\(\left(y+\frac{3}{7}\right)^{468}=0^{468}\)
=> \(x-\frac{2}{5}=0\)
\(y-\frac{3}{7}=0\)
=> \(x=\frac{2}{5}\)
\(y=\frac{3}{7}\)
Vậy \(x=\frac{2}{5}\)\(y=\frac{3}{7}\)