Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
a) \(\left|2,5-x\right|-1,3=0\)
th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)
th2: \(2,5-x< 0\Leftrightarrow x>2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)
vậy \(x=1,2;x=3,8\)
b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)
c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)
th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)
th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)
vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)
d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)
th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)
vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)
e) ta có : \(\left|x-1,5\right|\ge0\forall x\) và \(\left|2,5-x\right|\ge0\forall x\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
a, Ta có :
\(A=\left|x\right|+\dfrac{6}{13}\)
Với \(\forall x\) ta có :
\(\left|x\right|\ge0\)
\(\Leftrightarrow\left|x\right|+\dfrac{6}{13}\ge\dfrac{6}{13}\)
\(\Leftrightarrow A\ge\dfrac{6}{13}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
Vậy \(A_{Min}=\dfrac{6}{13}\Leftrightarrow x=0\)
b, Ta có :
\(\left|x+2,8\right|\ge0\)
\(\Leftrightarrow\left|x+2,8\right|-7,9\ge-7,9\)
\(\Leftrightarrow B\ge7,9\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+2,8\right|=0\Leftrightarrow x=-2,8\)
Vậy \(B_{Min}=-7,9\Leftrightarrow x=-2,8\)
bài 1)
a) \(\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{15}\right)
\)
\(\left(\dfrac{5}{42}-x\right)=\dfrac{11}{13}+\dfrac{15}{28}-\dfrac{11}{15}\)
\(x=\dfrac{5}{42}-\dfrac{3541}{5460}=-\dfrac{413}{780}\)
b) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)
\(\left|x+\dfrac{4}{15}\right|=-\left|2,15\right|+\left|3,75\right|=1,6\)
\(\Rightarrow x+\dfrac{4}{15}=1,6\) hoặc \(x+\dfrac{4}{15}=-1,6\)
\(\Rightarrow x=\dfrac{4}{3}\) hoặc \(x=-\dfrac{28}{15}\)
c) \(\dfrac{5}{3}-\left|x-\dfrac{3}{2}\right|=-\dfrac{1}{2}\)
\(\Rightarrow\left|x-\dfrac{3}{2}\right|=\dfrac{5}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)
\(\Rightarrow x-\dfrac{3}{2}=\dfrac{13}{6}\) hoặc \(x-\dfrac{3}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{11}{3}\) hoặc \(x=-\dfrac{2}{3}\)
d)\(\left(x-\dfrac{2}{3}\right).\left(2x-\dfrac{3}{2}\right)=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\) hoặc \(2x-\dfrac{3}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)
3) a) \(\left(x^{^2}-4\right)^{^2}+\left(x+2\right)^{^2}=0\)
Vì \(\left(x^{^2}-4\right)^{^2}\ge0,\left(x+2\right)^{^2}\ge0\) nên :
\(\left\{{}\begin{matrix}x^{^2}-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=\pm2\)
b) \(\left(x-y\right)^{^2}+\left|y+2\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^{^2}\ge0\\\left|y+2\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=0\\y=-2\end{matrix}\right.\Rightarrow x=-2;y=-2\)
c) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
Vì \(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+\dfrac{9}{25}\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow y=-\dfrac{9}{25};x=-\dfrac{9}{25}\)
d) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\left(-\dfrac{1}{4}\right)-\left|y\right|\)
\(\Rightarrow\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\)
Vì \(\left\{{}\begin{matrix}\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|\ge0\\\left|y\right|\ge0\end{matrix}\right.\) mà \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\) nên không tồn tại x,y thỏa mãn đề bài .
a)
\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)
đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)
vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)
c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn
\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)
d)
\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)
e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{2}{x-3}-\dfrac{2}{x-2}+\dfrac{1}{x-8}-\dfrac{1}{x-3}+\dfrac{1}{x-20}-\dfrac{1}{x-8}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{2}{x-2}=\dfrac{-3}{4}\)
\(\Leftrightarrow4\left(x-2\right)-8\left(x-3\right)=-3\left(x-3\right)\left(x-2\right)\)
\(\Leftrightarrow4x-8-8x+24+3\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow3x^2-15x+18-4x+16=0\)
\(\Leftrightarrow3x^2-19x+34=0\)
\(\text{Δ}=\left(-19\right)^2-4\cdot3\cdot34=-47< 0\)
Do đó: Phương trình vô nghiệm
Mấy câu này dễ mà,động não lên chứ bạn:v
Link______________Link
h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
\(\ge\left|x-1+3-x\right|=2\)
\(\Rightarrow x+1>2\Leftrightarrow x>1\)
Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)
Câu b xét khoảng tương tự với cái link t đưa thôi
hơi bức xúc rồi đó
tau chỉ muốn kiểm tra lại thôi
a) \(\left|x\right|=9,5\Leftrightarrow\left[{}\begin{matrix}x=9,5\\x=-9,5\end{matrix}\right.\)
b) \(\left|x+2\right|=\left|\dfrac{-3}{20}\right|=\dfrac{3}{20}\Leftrightarrow\left[{}\begin{matrix}x+2=\dfrac{3}{20}\\x+2=-\dfrac{3}{20}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{29}{15}\\x=-\dfrac{31}{15}\end{matrix}\right.\)
c) \(\left|x\right|=-2,4\Rightarrow x\in\varnothing\left(\left|x\right|\ge0\right)\)
d) \(\left|x+2,8\right|=1,5\Leftrightarrow\left[{}\begin{matrix}x+2,8=1,5\\x+2,8=-1,5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1,3\\x=-4,3\end{matrix}\right.\)