Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 Tìm giá trị lớn nhất của biểu thức :
a) A=-2x^2+5x-8 ; B=3-x^2+4x ; C=-2x^2+3x+1 ; D=-5x^2-4x-19/5
\(a.A=-2x^2+5x-8=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{5}{4}\right)^2-\dfrac{39}{8}\text{≤}-\dfrac{39}{8}\) ⇒ \(A_{Max}=-\dfrac{39}{8}."="\) ⇔ \(x=\dfrac{5}{4}\)
\(b.B=3-x^2+4x=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\) ≤ 7
⇒ \(B_{Max}=7."="\) ⇔ \(x=2\)
\(c.C=-2x^2+3x+1=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{17}{8}=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\text{≤}\dfrac{17}{8}\)
⇒ \(C_{Max}=\dfrac{17}{8}."="\)⇔ \(x=\dfrac{3}{4}\)
\(d.D=-5x^2-4x-\dfrac{19}{5}=-5\left(x^2+2.\dfrac{2}{5}x+\dfrac{4}{25}\right)-3=-5\left(x+\dfrac{2}{5}\right)^2-3\text{≤}-3\)⇒ \(D_{Max}=-3."="\) ⇔ \(x=-\dfrac{2}{5}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) 5x^2-(2x+1)(x-2)-x(3x+3)+7
= 5x^2-2x^2+4x-x+2-3x^2-3x+7
= 9
Suy ra 5x^2-(2x+1)(x-2)-x(3x+3)+7 ko phụ thuộc vào giá trị của biến x
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
c) (5x-2)(x+1)-(x-3)(5x+1)-17(x-2)
= 5x^2+5x-2x-2-5x^2-x-15x-3-17x+2
= -3
Suy ra (5x-2)(x+1)-(x-3)(5x+1)-17(x-2) ko phụ thuộc vào giá trị của biến x
d) (4x-5)(x+2)-(x+5)(x-3)-3x^2-x
= 4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x
=5
Suy ra (4x-5)(x+2)-(x+5)(x-3)-3x^2-x ko phụ thuộc vào giá trị của biến x
k mik nha
Chúc bạn học giỏi
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi
a) \(A=5x^2-4x+1\)
\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)
b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)
c) \(F=-2x^2-y^2+2xy+4x-40\)
\(F=-x^2-x^2-y^2+2xy+4x-40\)
\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)
\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)
\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)
\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)
\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)
Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)
GTLN của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)
cn lại lm tg tự nha bn