Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$ĐKXĐ : x \neq 2, x \neq -2$
Ta có : $1+\dfrac{2}{x-2} = \dfrac{2x^2}{x^2-4}$
$\to \dfrac{x^2-4+2.(x+2)}{(x-2).(x+2)} = \dfrac{2x^2}{(x-2).(x+2)}$
$\to x^2-4+2.(x+2) = 2x^2$
$\to x^2 -2x - 8 = 0 $
$\to (x-4).(x+2) = 0 $
$\to x = 4$ ( Do $x \neq -2, 2$ )
Vậy \(S=\left\{4\right\}\)
a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy x = 1
b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)
\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)
\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)
=> Phương trình vô nghiệm
Ta có :\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+1}{x^2-1}\)
\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{x^2-1}\)
\(=\frac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)
a) \(\left|x-2\right|+3x-9=0\)
\(\Leftrightarrow\left|x-2\right|=9-3x\)
+) Xét \(x\ge2\)
\(pt\Leftrightarrow x-2=9-3x\)
\(\Leftrightarrow x+3x=9+2\)
\(\Leftrightarrow4x=11\)
\(\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+) Xét \(x< 2\)
\(pt\Leftrightarrow2-x=9-3x\)
\(\Leftrightarrow-x+3x=9-2\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\frac{7}{2}\left(ktm\right)\)
Vậy....
ĐKXĐ: x khác + -2
A=( 1/(x-2) + 2x/(x-2)(x+2) +1/(x+2)) . (x-1)/2
=((x+2+2x+x-2)/(x-2)(x+2)).((x-1)/2)
=(4x/(x-2)(x+2)).(x-1)/2 =2x/ (x-1)(x-2)(x+2)
đề là gì vậy