Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+3^2)+(3^4+3^6)+...+(3^48+3^50)
A=1(1+3^2)+3^4(1+3^2)+...+3^48(1+3^2)
A=1.10+3^4.10+...+3^48.10
A=10(1+3^4+...+3^48)
A=2.5(1+3^4+...+3^48)
=>A chia hết cho 2 và 5 nên 8.A cũng chia hết cho 2 và 5
A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)
A.3=\(3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.3=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\)
A.3-A=\(\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.2=\(1-\dfrac{1}{3^8}\)
A=\(\dfrac{1-\dfrac{1}{3^8}}{2}=\dfrac{3280}{6561}\)
a/ (3x - 1).(1/2.5) = 0 => 3x - 1 = 0 => 3x = 1 => x = 1/3
b/ 1/4 + 1/3 : (2x - 1) = 5 => 1/3 : (2x - 1) = 19/4 => 2x - 1 = 4/57 => 2x = 61/57 => x = 61/114
c/ (2x + 2/5)2 - 9/25 = 0 => (2x + 2/5)2 = 9/25 => 2x + 2/5 = 3/5 => 2x = 1/5 => x = 1/10
hoặc 2x + 2/5 = -3/5 => 2x = -1 => x = -1/2
Vậy x = {1/10 ; -1/2}
d/ (3x - 1/2)3 + 1/9 = 0 => (3x - 1/2)3 = -1/9 => 3x - 1/2 = -1/3 => 3x = 1/6 => x = 1/18
ghi đề rõ đi bạn ơi
mik làm cho
hok tốt
3^ 4n + 2 - 2^ 4n + 2
= 2^ 4n +2 . 4n +2 -2^ 4n+2
= 4n +2
tk mk nha
_TRANG_
a, A =2 + 22 +2 3+ 2 4 + ..... + 2 19 + 2 20
A =(2 + 22 )+(2 3 + 2 4 )+ ..... + (2 19 + 2 20)
A =2 (1 + 2 )+2 3(1 + 2 )+ ..... +2 19 (1 + 2)
A =2 .3+2 3.3+ ..... +2 19 .3 = 3.(2 +2 3+ ..... +219)
Vì 3 chia hết cho 3 => 3.(2 +2 3+ ..... +219) chia hết cho 3=> A chia hết cho 3
\(3^2\left(x+4\right)-5^2=5.2^2\)
\(9\left(x+4\right)-25=5.4\)
\(9\left(x+4\right)-25=20\)
\(9\left(x+4\right)=20+25\)
\(9\left(x+4\right)=45\)
\(X+4=45:9\)
\(x+4=5\)
\(x=5-4\)
\(x=1\)
Vậy x=1
\(3^{2.5}-2^{2.7}+83\)
\(=3^{10}-2^{14}+83\)
\(=59049-16384+83\)
\(=42665+83\)
\(=42748\)
b)Ta có:
\(3^{99}>3^{93}=\left(3^3\right)^{21}=27^{21}\)
Vì \(27^{21}>11^{21}\) nên \(3^{99}>27^{21}>11^{21}\) hay \(3^{99}>11^{21}\)
a) Ta có:
19920 < 20020 = 20015.2005
200315 > 200015 = 20015.1015 = 20015.(103)5 = 20015.10005
Vì 19920 < 20015.2005 < 20015.10005 < 200315
=> 19920 < 200315
b) Ta có:
399 = (33)33 = 2733 > 1121
=> 399 > 1121
\(3^{4x-2}:3^{2x-1}\)
\(=3^{2\left(2x-1\right)}:3^{2x-1}\)
\(=3^{2x-1}.3^{2x-1}:3^{2x-1}\)
\(=3^{2x-1}\)